考虑一个菊花图:1号点为中心,其他n-1个点都与1号点直接相连。
计算两个边分成一组,有多少分组方法:
答案是1*3*5*7*…*n
证明过程
现在来考虑一个普通图:
假设A点是B点的父亲
B点有N个儿子(不包含父亲),假设全部都是叶子节点
1:如果N是偶数,那么将这些连接叶子节点的边两两分组,它有1 * 3*5*7 … * N (1-N中的奇数相乘)种分组方法
2:如果N是奇数,它同样有1 * 3 * 5 * … * N(1到N中的奇数相乘)种分组方法,而且必定会剩下一个边无法配对,所以这个剩下的边只好与B点与父亲相连的那条边配对
当A点在进行统计时,假设统计到了A1个奇数节点(N为奇数的B点),统计到了A2个偶数节点(N为偶数的B点),奇数节点已经把连接父亲节点的边给用掉了,所以A点可用于自由组合的边只有连接偶数节点的那些边(即1-A2中的奇数相乘)。
所以,答案就是所有点的自由分配方案的乘积
#pragma GCC optimize(2)
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#define int long long
#define endl '\n'
using namespace std;
const int N = 1e5 + 10;
int n;
vector<int>g[N];
const int N1 = 100010, mod = 998244353;
int f[N];
bool dfs(int u, int fa) {
int cnt = 0;
f[u] = 1;
for (auto i : g[u]) {
if (i == fa)
continue;
if (dfs(i, u)==0)
cnt++;
f[u] = f[u] * f[i] % mod;
}
for (int i = 1; i <= cnt; i += 2) {
f[u] = f[u] * i % mod;
}
return cnt % 2;
}
void solve() {
cin >> n;
for (int i = 1; i <= n - 1; i++) {
int a, b;
cin >> a >> b;
g[a].push_back(b);
g[b].push_back(a);
}
dfs(1, -1);
cout << f[1] << endl;
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
solve();
}