在 Python 生态中,不同的框架适用于不同的任务。从 底层数学计算 到 大语言模型(LLM)应用开发,各个库承担着不同的角色。以下是它们的关系与适用场景:
1. 总览:功能分层
层级 | 框架 | 主要用途 |
---|---|---|
LLM 应用开发 | 🏗 LangChain | 构建 LLM 应用,集成检索增强生成(RAG)、多步任务流、工具集成 |
预训练模型 & NLP 任务 | 🤗 Hugging Face | 提供 Transformer 预训练模型,如 BERT、GPT、T5,支持 NLP 任务 |
深度学习 & 训练 LLM | 🔥 PyTorch | 训练深度学习模型,如 GPT、CNN、RNN、Transformer |
传统机器学习 | 🎯 Scikit-learn | 逻辑回归、随机森林、SVM、KNN、聚类、降维等 ML 算法 |
数据可视化 | 📊 Matplotlib | 绘制图表,数据可视化 |
数据处理 | 📑 Pandas | 结构化数据处理(DataFrame),CSV/Excel 读取、ETL |
数值计算 & 矩阵运算 | 🧮 NumPy | 线性代数、矩阵计算、科学计算,底层支持 Pandas、PyTorch |
2. 详细对比
框架 | 主要作用 | 适用场景 | 核 |
---|