【全网最全】Python机器&深度学习框架大总结(学习路线/框架选择):langchain>huggingface>pytorch≈sklearn>matplotlib>pandas>numpy

在 Python 生态中,不同的框架适用于不同的任务。从 底层数学计算大语言模型(LLM)应用开发,各个库承担着不同的角色。以下是它们的关系与适用场景:

1. 总览:功能分层

层级 框架 主要用途
LLM 应用开发 🏗 LangChain 构建 LLM 应用,集成检索增强生成(RAG)、多步任务流、工具集成
预训练模型 & NLP 任务 🤗 Hugging Face 提供 Transformer 预训练模型,如 BERT、GPT、T5,支持 NLP 任务
深度学习 & 训练 LLM 🔥 PyTorch 训练深度学习模型,如 GPT、CNN、RNN、Transformer
传统机器学习 🎯 Scikit-learn 逻辑回归、随机森林、SVM、KNN、聚类、降维等 ML 算法
数据可视化 📊 Matplotlib 绘制图表,数据可视化
数据处理 📑 Pandas 结构化数据处理(DataFrame),CSV/Excel 读取、ETL
数值计算 & 矩阵运算 🧮 NumPy 线性代数、矩阵计算、科学计算,底层支持 Pandas、PyTorch

2. 详细对比

框架 主要作用 适用场景
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值