企业家们应该从李彦宏的狼性文化学什么?

企业家们应该从李彦宏的狼性文化学什么?


    近日,百度CEO李彦宏一封倡导“狼性文化”的内部邮件,在业界引发了巨大的讨论和争议。在我看来,对于拥有一家占据80%市场份额、业绩稳定攀升的企业的领导人,狼性文化的提出,恰恰反映了李彦宏的冷静自省和敢于变革的勇气。


    中国的互联网公司大多都在这10年里崛起,在改变人们生活方式的同时,自身也在迅速扩张,成为价值上亿的大企业。然而,随着规模的扩张,这些互联网公司都不可避免地患上大企业病——机构臃肿,行动缓慢,协调困难,思维僵化。李彦宏在这时候率先提出改革,大刀阔斧防治百度可能滋生的大企业病,尽管引起争议,的确是下了一番苦心和决心。


    马尔科姆•格拉德威尔在其著名的Tipping Point《引爆点》中说,一个组织人员一旦超过150,沟通交流就会出现问题,沟通不畅,矛盾和懈怠就产生了。百度的人员规模从最初的不足10人增长到现在17000多人,李彦宏面临的,不仅是要让承载了这么多人的大船驶向同一个方向,还得保持这艘船足够的前进动力。此次提出的“狼性文化”——敏锐的嗅觉,不屈不挠的进取精神,群体奋斗,正是要让百度继续保持小团队的活力。这就好比狼群的每次出击,目标要一致,分工要明确,群起而攻之,才能准确捕杀猎物。


    大企业最害怕的就是缺乏活力,随着公司的稳步发展,员工都在舒适安逸的企业氛围中变成温水中的青蛙。想当年,杰克•韦尔奇在改革GE时,制订了“通力合作”方案,强调公司必须以人为本,激发员工参与公司经营的责任感,集中公司上下、内外的智慧去培植、收集并实施好点子的经营策略。


    保持团队的创新和激情,需要有机制的激励和保障。实际上,百度早已意识到这一点。无论是只奖励基层员工小团队的最高奖机制,还是工程师自由组团的黑客马拉松比赛,其目的无疑均是希望调动员工的创新热情和活力。


    想要让庞大的工程师队伍一直保持创业般的激情,还要改变固有的思维模式。李彦宏这次呼吁员工保持狼性,保持不屈不挠、奋不顾身的进攻精神,就是想激发员工的责任感,让这么多清华北大毕业的精英们都发挥出各自的潜能,不要安于现状、丧失斗志,在安逸的生活中渐渐退化。


    大企业另外的一个致命弱点是决策慢、对市场的反应迟钝。随着规模的扩大,管理层级的增加,决策的时间被逐步延长,机遇稍纵即逝。此外,减化决策程序,减少不必要的会议、减少多余的管理人员,也都是包括百度在内的大企业们均需要研习的重要功课。


    如何面对市场的变化,找到自己的问题所在,摸索出适合自己的发展道路是每个大企业想要进一步发展所必须攻克的难题。对于百度来说,充满斗志和活力的狼性文化,或许将帮助这家在互联网搜索领域已经拥有绝对优势的公司大踏步抢占移动市场,用自内而外的创新和激情实现第二次的腾飞。我们更期待,从狼性文化中受益的,不仅仅限于百度。

 

我的联系方式:
QQ 543415188
MSN feitianhanxue@hotmail.com
Email feitianhanxue@126.com

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值