使用Keras进行深度学习:(一)Keras 入门

keras 专栏收录该内容
17 篇文章 3 订阅

欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习、深度学习的知识!

Keras是Python中以CNTK、Tensorflow或者Theano为计算后台的一个深度学习建模环境。相对于其他深度学习的框架,如Tensorflow、Theano、Caffe等,Keras在实际应用中有一些显著的优点,其中最主要的优点就是Keras已经高度模块化了,支持现有的常见模型(CNN、RNN等),更重要的是建模过程相当方便快速,加快了开发速度。

笔者使用的是基于Tensorflow为计算后台。接下来将介绍一些建模过程的常用层、搭建模型和训练过程,而Keras中的文字、序列和图像数据预处理,我们将在相应的实践项目中进行讲解。
各层函数只介绍一些比较常用参数,详细参数介绍可查阅Keras文档 。

1. 核心层

(1)全连接层:神经网络中最常用到的,实现对神经网络里的神经元激活。

Dense(units, activation=’relu’, use_bias=True)

参数说明:

units: 全连接层输出的维度,即下一层神经元的个数
activation:激活函数,默认使用Relu
use_bias:是否使用bias偏置项

(2)激活层:对上一层的输出应用激活函数。

Activation(activation)

参数说明:

Activation:想要使用的激活函数,如:relu、tanh、sigmoid等

(3) Dropout层:对上一层的神经元随机选取一定比例的失活,不更新,但是权重仍然保留, 防止过拟合。

Dropout(rate)

参数说明:

 rate:失活的比例,0-1的浮点数。

(4)Flatten层:将一个维度大于或等于3的高维矩阵,“压扁”为一个二维矩阵。即保留第一个维度(如:batch的个数),然后将剩下维度的值相乘为“压扁”矩阵的第二个维度。

Flatten()

(5)Reshape层:该层的作用和numpy.reshape一样,就是将输入的维度重构成特定的shape。

Reshape(target_shape)

参数说明:

 target_shape:目标矩阵的维度,不包含batch样本数。如我们想要一个9个元素的输入向量重构成一个( None, 3, 3) 的二维矩阵:Reshape((3,3), input_length=(16, ))

(6)卷积层:卷积操作分为一维、二维、三维,分别为Conv1D、Conv2D、Conv3D。一维卷积主要应用于以时间序列数据或文本 数据,二维卷积通常应用于图像数据。由于这三种的使用和参数都基本相同,所以主要以处理图像数据的Conv2D进行说明。

Conv2D(filters, kernel_size, strides=(1, 1), padding='valid') 

参数说明:

filters:卷积核的个数。
kernel_size:卷积核的大小。
strdes:步长,二维中默认为(1, 1),一维默认为1。
Padding:补“0”策略,'valid'指卷积后的大小与原来的大小可以不同,'same'则卷积后大小与原来大小 一 致。

(7)池化层:与卷积层一样,最大统计量池化和平均统计量池也有三种,分别为MaxPooling1D、MaxPooling2D、MaxPooling3D、AveragePooling1D、AveragePooling2D、AveragePooli ng3D,

由于使用和参数基本相同,所以主要以MaxPooling2D进行说明。

MaxPooling(pool_size=(2,2), strides=None, padding=’valid’)

参数说明:

pool_size:长度为2的整数tuple,表示在横向和纵向的下采样样子,一维则为纵向的下采样因子
padding:和卷积层的padding一样。

(8) 循环层:循环神经网络中的RNN、LSTM和GRU都继承本层,所以该父类的参数同样使用于对应的子类SimpleRNN、LSTM和GRU。

Recurrent(return_sequences=False)

参数说明:

return_sequences:控制返回的类型,“False”返回输出序列的最后一个输出,“True”则返回整个序列。当我们要搭建多层神经网络(如深层LSTM时,若不是最后一层,则需要将该参数设为True。

(9) 嵌入层:该层只能用在模型的第一层,是将所有索引标号的稀疏矩阵映射到致密的低维矩阵。如我们对文本数据进行处理时,我们对每个词编号后,我们希望将词编号变成词向量就可以使 用嵌入层。

Embedding(input_dim, output_dim, input_length)

参数说明:

Input_dim:大于或等于0的整数,字典的长度即输入数据的个数。
output_dim:输出的维度,如词向量的维度。
input_length:当输入序列的长度为固定时为该长度,然后要在该层后加上Flatten层,然后再加上Dense层,则必须指定该参数,否则Dense层无法自动推断输出的维度。

该层可能有点费解,举个例子,当我们有一个文 本,该文本有100句话,我们已经通过一系列操作,使得文本变成一个(100,32)矩阵,每行代表一句话,每个元素代表一个词,我们希望将该词变为64维的词向量。

Embedding(100, 64, input_length=32) 则输出的矩阵的shape变为(100, 32, 64):即每个词已经变成一个64维的词向量。

2 模型搭建

讲完了一些常用层的语法后,接下来我们通过模型搭建来说明Keras的方便性。Keras中设定了两类深度学习的模型,一类是序列模型(Sequential类);另一类是通用模型(Model 类)。下面我们通过搭建下图模型进行讲解。

图1 两层神经网络

假设我们有一个两层神经网络,其中输入层为784个神经元,隐藏层为32个神经元,输出层为10个神经元,其中隐藏层使用ReLU激活函数,输出层使用Softmax激活函数。分别使用序列模型和通用模型实现如下:

图 2:导入相关库

图 3:序列模型实现

使用序列模型,首先我们要实例化Sequential类,之后就是使用该类的add函数加入我们想要的每一层,从而实现我们的模型。

图 4:通用模型实现

使用通用模型,首先要使用Input函数将输入转化为一个tensor,然后将每一层用变量存储后,作为下一层的参数,最后使用Model类将输入和输出作为参数即可搭建模型。

从以上两类模型的简单搭建,都可以发现Keras在搭建模型比起Tensorflow等简单太多了,如Tensorflow需要定义每一层的权重矩阵,输入用占位符等,这些在Keras中都不需要,我们只要在第一层定义输入维度,其他层定义输出维度就可以搭建起模型,通俗易懂,方便高效,这是Keras的一个显著的优势。

3 模型优化和训练

compile(optimizer, loss, metrics=None)

参数说明:

optimizer:优化器,如:’SGD‘,’Adam‘等
loss:定义模型的损失函数,如:’mse’,’mae‘等
metric:模型的评价指标,如:’accuracy‘等
fit(x=None,y=None,batch_size=None,epochs=1,verbose=1,validation_split=0.0)

参数说明:

x:输入数据。
y:标签。
batch_size:梯度下降时每个batch包含的样本数。
epochs:整数,所有样本的训练次数。
verbose:日志显示,0为不显示,1为显示进度条记录,2为每个epochs输出一行记录。validation_split:0-1的浮点数,切割输入数据的一定比例作为验证集。

图 5:优化和训练实现

最后用以下图片总结keras的模块,下一篇文章我们将会使用keras来进行项目实践,从而更好的体会Keras的魅力。

对深度学习感兴趣,热爱Tensorflow的小伙伴,欢迎关注我们的网站http://www.panchuang.net 我们的公众号:磐创AI。

本篇文章出自http://www.tensorflownews.com,对深度学习感兴趣,热爱Tensorflow的小伙伴,欢迎关注我们的网站!

  • 3
    点赞
  • 2
    评论
  • 17
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
<p style="font-family: tahoma, 微软雅黑, arial, 宋体; margin: 0px; padding: 0px; box-sizing: border-box; border: 0px; outline: 0px; font-size: 14px; vertical-align: baseline; background: #ffffff; list-style-type: none; color: #333333; word-spacing: 1px;">ClickHouse是个用于OLAP的数据分析引擎,由俄罗斯搜索巨头Yandex公司开源。</p> <p style="font-family: tahoma, 微软雅黑, arial, 宋体; margin: 0px; padding: 0px; box-sizing: border-box; border: 0px; outline: 0px; font-size: 14px; vertical-align: baseline; background: #ffffff; list-style-type: none; color: #333333; word-spacing: 1px;">1、可支持PB级超大容量的数据库管理系统。</p> <p style="font-family: tahoma, 微软雅黑, arial, 宋体; margin: 0px; padding: 0px; box-sizing: border-box; border: 0px; outline: 0px; font-size: 14px; vertical-align: baseline; background: #ffffff; list-style-type: none; color: #333333; word-spacing: 1px;">2、基于SQL语句, 使用成本低。 </p> <p style="font-family: tahoma, 微软雅黑, arial, 宋体; margin: 0px; padding: 0px; box-sizing: border-box; border: 0px; outline: 0px; font-size: 14px; vertical-align: baseline; background: #ffffff; list-style-type: none; color: #333333; word-spacing: 1px;">3、超亿级数据量分析的秒级响应,计算性能横向扩展。</p> <p style="font-family: tahoma, 微软雅黑, arial, 宋体; margin: 0px; padding: 0px; box-sizing: border-box; border: 0px; outline: 0px; font-size: 14px; vertical-align: baseline; background: #ffffff; list-style-type: none; color: #333333; word-spacing: 1px;">4、海量数据即查即用。</p> <p style="font-family: tahoma, 微软雅黑, arial, 宋体; margin: 0px; padding: 0px; box-sizing: border-box; border: 0px; outline: 0px; font-size: 14px; vertical-align: baseline; background: #ffffff; list-style-type: none; color: #333333; word-spacing: 1px;">5、提供数据的预聚合能力,进步提升数据查询的效率。</p> <p style="font-family: tahoma, 微软雅黑, arial, 宋体; margin: 0px; padding: 0px; box-sizing: border-box; border: 0px; outline: 0px; font-size: 14px; vertical-align: baseline; background: #ffffff; list-style-type: none; color: #333333; word-spacing: 1px;">6、列式存储, 数据压缩,降低磁盘IO和网络IO,提升计算性能,节约70%物理存储。</p> <p style="font-family: tahoma, 微软雅黑, arial, 宋体; margin: 0px; padding: 0px; box-sizing: border-box; border: 0px; outline: 0px; font-size: 14px; vertical-align: baseline; background: #ffffff; list-style-type: none; color: #333333; word-spacing: 1px;">7、支持副本, 实现跨机房的数据容灾。</p> <p style="font-family: tahoma, 微软雅黑, arial, 宋体; margin: 0px; padding: 0px; box-sizing: border-box; border: 0px; outline: 0px; font-size: 14px; vertical-align: baseline; background: #ffffff; list-style-type: none; color: #333333; word-spacing: 1px;"><br style="font-family: 'Helvetica Neue', Helvetica, 'Hiragino Sans GB', Arial, sans-serif; margin: 0px; padding: 0px;" />课程基于ClickHouse的**的20.x版本,从理论到实践,由浅入深详解ClickHouse的原理和使用。</p> <p style="font-family: tahoma, 微软雅黑, arial, 宋体; margin: 0px; padding: 0px; box-sizing: border-box; border: 0px; outline: 0px; font-size: 14px; vertical-align: baseline; background: #ffffff; list-style-type: none; color: #333333; word-spacing: 1px;">1. 本课程从零开始,有Linux操作系统和SQL使用经验即可。</p> <p style="font-family: tahoma, 微软雅黑, arial, 宋体; margin: 0px; padding: 0px; box-sizing: border-box; border: 0px; outline: 0px; font-size: 14px; vertical-align: baseline; background: #ffffff; list-style-type: none; color: #333333; word-spacing: 1px;">2. 课程以案例驱动,包含大量的实践案例。</p> <p style="font-family: tahoma, 微软雅黑, arial, 宋体; margin: 0px; padding: 0px; box-sizing: border-box; border: 0px; outline: 0px; font-size: 14px; vertical-align: baseline; background: #ffffff; list-style-type: none; color: #333333; word-spacing: 1px;">3. 将ClickHouse与MySQL、Kafka、HDFS等第三方系统集成,增强ClickHouse的功能。</p> <p style="font-family: tahoma, 微软雅黑, arial, 宋体; margin: 0px; padding: 0px; box-sizing: border-box; border: 0px; outline: 0px; font-size: 14px; vertical-align: baseline; background: #ffffff; list-style-type: none; color: #333333; word-spacing: 1px;">4. 课程覆盖面广,既有基础功能的详细讲解, 也包含了集群部署、查询优化、运维管理等高级内容。</p>
<p><span style="font-size: 24px; background-color: #e53333; color: #ffffff;"><strong>课程目标</strong></span></p> <p> </p> <p><span style="font-size: 18px;">从零开始掌握Premiere影视剪辑的基础知识,学会</span><span style="font-size: 18px; color: #e53333;"><span style="color: #e53333;"><strong>视频剪辑+影视特效+视频调色+字幕制作</strong></span></span></p> <p> </p> <p><span style="font-size: 24px; background-color: #e53333; color: #ffffff;">适用人群</span></p> <p> </p> <p><span style="font-size: 18px;">PR零基础小白,在校大学生,职场新人,想成为影视剪辑、影视后期、短视频制作、自媒体等高手的朋友。</span></p> <p> </p> <p><span style="font-size: 24px; background-color: #e53333; color: #ffffff;">课程简介</span></p> <p> </p> <p><span style="font-size: 18px;">课程以新版PR 2020讲解,可使用PR任意版本学习,绝大多数功能兼容旧版,但强烈建议使用新版本。</span></p> <p><span style="font-size: 18px;">【Adobe认证专家讲师精耕细作精品教程,非学院派照本宣科软件操作教程,以任务为导向,面向实际应用场景,每章都能学会实打实的高手技能,讲解细致,小白也能轻松入门成大神!】</span></p> <p><span style="font-size: 18px;">课程好不好,看过就知道,前面的免费章节欢迎试看。</span></p> <p><span style="font-size: 18px;">本课程学习不需要任何PR基础,只需要电脑操作基础即可。兼容Windows和Mac操作系统,同时讲解两种系统下的快捷键操作,不用担心操作上的障碍问题。</span></p> <p> </p> <p><span style="font-size: 24px; background-color: #e53333; color: #ffffff;">课程特色</span></p> <p> </p> <p><span style="font-size: 18px;">1、以实际PR影视编辑与特效的流程为导向,绝大多数内容都是为了完成某个具体任务,而不是为了讲解某个软件操作而凑数。</span></p> <p><span style="font-size: 18px;">2、不同于国内多数教程和书籍,每个知识点务求讲精、讲透,帮助你掌握PR的精髓,而非软件操作上的皮毛,让你真正学到PR的本质,次学习,终身受用,少走弯路,节约生命。</span></p> <p><span style="font-size: 18px;">3、课程会随PR新版本的推出持续更新,不必担心有新功能却不知道怎么用。</span></p> <p><span style="font-size: 18px;">4、充足的练习题和作业题,让你在不断的练习和挑战中提升PR技能。</span></p> <div> <p> </p> <p><img src="https://img-bss.csdnimg.cn/202009230003497469.png" alt="" width="880" height="2635" /><img src="https://img-bss.csdnimg.cn/202009230004006917.png" alt="" width="880" height="2635" /><img src="https://img-bss.csdnimg.cn/202009230004102289.png" alt="" width="880" height="2635" /><img src="https://img-bss.csdnimg.cn/202009230004197845.png" alt="" width="880" height="1445" /></p> </div>
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值