直接用三种不同的作图函数作图:
plot(),fplot(),ezplot()
figure
x = 0.01:0.001:0.1;
subplot(3,1,1);
plot(x,sin(1./x));
axis([0.01 0.1 -1 1])
title('plot')
subplot(3,1,2)
fplot(@(x)sin(1./x),[0.01 0.1])
axis([0.01 0.1 -1 1])
title('fplot')
subplot(3,1,3)
ezplot(@(x)sin(1./x),[0.01 0.1])
axis([0.01 0.1 -1 1])
title('ezplot');
结果如下:
如果只用plot作图,变化剧烈和变化平缓的区域,取样时频率是相同的,所以对于变化剧烈的部分,曲线的特征不能完整呈现。
对于存在跳跃点的函数,同样有着区别:
figure
x = linspace(-4*pi,4*pi,100);
subplot(3,1,1)
plot(x,tan(x))
axis([-inf inf -10 10])
title('plot')
subplot(3,1,2)
fplot(@(x)tan(x),[-4*pi,4*pi])
axis([-inf inf -10 10])
title('fplot')
subplot(3,1,3)
ezplot(@(x)tan(x),[-4*pi,4*pi])
axis([-inf inf -10 10])
title('ezplot')
结果如下:
可以看出:后两种绘图方式更能贴合曲线特征,且两者的区别是是否在突变处将首尾相连。
来源《高等光学仿真——光波导、激光》