MATLAB仿真贝塞尔函数

文章介绍了贝塞尔函数的起源,即贝塞尔方程,并详细阐述了第一类和第二类贝塞尔函数以及Hankel函数。提到整数阶贝塞尔函数可通过FFT计算,并提供了MATLAB代码示例来绘制前五阶贝塞尔函数的图形,展示其震荡特性和零点分布。随着阶数增加,函数最大值减小,达到最大值所需时间增加。
摘要由CSDN通过智能技术生成

贝塞尔函数来源于贝塞尔方程:

z^2\frac{d_y^2}{dz^2}+z\frac{dy}{dz}+\left(z^2-n^2\right)y=0

第一二类贝塞尔函数分别是该方程的两个线性无关解J_n\left(z\right)Y_n\left(z\right)
贝塞尔方程如下:

n阶第一类贝塞尔函数:(积分表达式和级数表达式)

J_n\left(z\right)=\frac{1}{2\pi}\int_{-\pi}^{\pi}e^{-i\left(zsin\theta-n\theta\right)}d\theta

J_n\left(z\right)=\sum_{k=0}^{\infty}\frac{​{(-1)}^k{(z/2)}^{n+2k}}{k!(n+k)!}

第一类Hankel函数:

H_n^{\left(1\right)}\left(z\right)=J_n\left(z\right)+iY_n\left(z\right)

第二类Hankel函数:

H_n^{\left(2\right)}\left(z\right)=J_n\left(z\right)-iY_n\left(z\right)

可以看出,Hankel函数是贝塞尔函数特定的线性组合。

贝塞尔方程的一般解是上述任意两个的线性组合。

对于整数阶的贝塞尔函数,可以用FFT(快速傅里叶变换)来计算。

MATLAB包含有贝塞尔函数的表达,可以直接调用函数:

%J = besselj(nu,z);

第一个参数是贝塞尔函数的阶数,第二个参数是自变量
绘制前五阶的贝塞尔函数如下:

clear
M = 5;
N = 1001;%每一条曲线上的点数
Xmin = 0;
Xmax = 15;

x = linspace(Xmin,Xmax,N);
y = zeros(N,M);%y的每一列表示一阶贝塞尔函数
for m = 0:M-1
    y(:,m+1) = besselj(m,x);%贝塞尔函数有0阶
end

plot(x,y);
[ymax pos] = max(y);
for i = 1:M
    text(x(pos(i)+1),ymax(i)-0.05,['J_' num2str(i-1) '(x)']);
end
grid on
xlabel('x')
ylabel('J_n(x)')

结果:

 需要注意,对于多行多列的矩阵y,max(y)返回的结果包括最大值和最大值的位置两部分。

贝塞尔函数的图形展现出震荡的特性,有无穷个零点。

阶数越大,对应的最大值约小,同时第一次达到最大值的时间(x值)越大。

同时,从(0,0)到第一个最大值的过程是一个渐渐变化的过程,阶数越大,变到最大值的过程越缓慢。

来源《高等光学仿真——光波导、激光》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab练习生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值