武汉大学提出全球最大的口罩遮挡人脸数据集(附下载地址):RMFD

前言

近期受 COVID-19(新型冠状病毒肺炎)疫情影响,学术界、工业界陆续用AI技术帮助人类解决问题,并取得重大突破。其中关于口罩遮挡人脸识别、检测以及CT图像分析更是热门的研究方向。

RMFD:口罩遮挡人脸数据集

《Masked Face Recognition Dataset and Application》

论文:https://arxiv.org/abs/2003.09093

数据集下载链接:

https://github.com/X-zhangyang/Real-World-Masked-Face-Dataset

发起单位:武汉大学国家多媒体软件工程技术研究中心

原始样本示例

为了有效防止COVID-19 新型冠状病毒的传播,在冠状病毒流行期间,几乎每个人都戴着口罩。这几乎使传统的人脸识别技术在许多情况下无效,例如人脸考勤,火车站的人脸安全检查等。因此,迫切需要提高在口罩遮挡上的人脸识别的性能技术。当前大多数高级人脸识别方法都是基于深度学习而设计的,深度学习取决于大量人脸样本。但是,目前尚没有公开可用的口罩遮挡人脸识别数据集。

为此,这项工作提出了三种类型的口罩遮挡人脸数据集,包括口罩遮挡人脸检测数据集(MFDD),真实口罩遮挡人脸识别数据集(RMFRD)和模拟口罩遮挡人脸识别数据集(SMFRD)。其中,就我们所知,RMFRD目前是世界上最大的真实口罩遮挡人脸数据集。

这些数据集可供工业界和学术界免费使用,基于这些数据集,可以开发口罩遮挡人脸的各种应用。本项目开发的多粒度口罩遮挡人脸识别模型可达到95%的准确性,超过了行业报告的结果。

RMFD 数据集还在扩充中(希望大家助力贡献)

发起单位:武汉大学国家多媒体软件工程技术研究中心

联系人:熊张洋

联系邮箱:x_zhangyang@whu.edu.cn

为了进一步扩充数据集,欢迎大家将个人收集到的戴口罩图片,通过邮件的方式发送到 x_zhangyang@whu.edu.cn,我们会对收到的图片统一处理。


数据集下载

(1) 真实口罩人脸识别数据集:从网络爬取样本,经过整理、清洗和标注后,含525人的5千张口罩人脸、9万正常人脸。

(2) 模拟口罩人脸识别数据集:给公开数据集中的人脸戴上口罩,得到1万人、50万张人脸的模拟口罩人脸数据集。

原项目其实提供了数据集的百度网盘链接,但防止链接失效,这里还是直接附上整个数据集的链接比较合适(不会出错)

数据集下载链接:

https://github.com/X-zhangyang/Real-World-Masked-Face-Dataset


口罩人脸识别


基于建立的数据集,设计和训练了面部-眉眼多粒度口罩人脸识别模型,数据集上的识别精度达到95%

往期精彩回顾




适合初学者入门人工智能的路线及资料下载机器学习在线手册深度学习在线手册AI基础下载(pdf更新到25集)本站qq群1003271085,加入微信群请回复“加群”获取一折本站知识星球优惠券,请回复“知识星球”喜欢文章,点个在看
### 戴口罩人脸数据集概述 #### 用途 戴口罩人脸数据集主要用于支持人脸识别技术的研究和发展,特别是在疫情背景下,当人们普遍佩戴口罩的情况下。这些数据集有助于开发和评估能够有效处理面部部分遮挡情况下的识别算法[^1]。 #### 特点 - **RMFD (Real-World Masked Face Dataset)**: 这一数据集特别强调其来源于现实生活中的场景,涵盖了广泛的真实环境中佩戴口罩的情况。它不仅考虑到了不同的光照条件(如室内、室外),还涉及多种干扰因素的存在,比如戴眼镜者或不同姿态的角度变化等。 - **SF-MASK**: 此外还有专门针对小尺寸脸部图像以及复杂环境下(例如被其他物体部分遮盖)的设计;更重要的是,这个数据集综合了多个已有的公开资源并进行了扩展和完善,使得样本更为全面多样[^2]. #### 获取方式 对于希望获取上述提到的数据集用于学术研究或者商业目的而言: - SF-MASK 则由于是由已有资料整理而来,具体获得途径需参照原作者说明文档中给出的信息指引。 值得注意的是,在实际操作前应当仔细阅读各数据库发布的使用条款和服务协议,确保合法合规地利用这些宝贵资源开展工作。 ```python import requests def fetch_dataset_info(dataset_name): url = f"https://example.com/api/dataset/{dataset_name}" response = requests.get(url) if response.status_code == 200: return response.json() else: raise Exception(f"Failed to retrieve dataset info for {dataset_name}") print(fetch_dataset_info('rmfd')) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值