作者 | Alvira Swalin
编译 | VK
来源 | Medium
第一部分主要讨论回归度量
在后现代主义的世界里,相对主义以各种各样的形式,一直是最受欢迎和最受诟病的哲学学说之一。相对主义认为,没有普遍和客观的真理,而是每个观点都有自己的真理。
在这篇文章中,我将根据目标和我们试图解决的问题来讨论每个错误度量的用处。当有人告诉你“美国是最好的国家”时,你应该问的第一个问题是,这种说法是基于什么。我们是根据每个国家的经济状况,还是根据它们的卫生设施等来判断它们?
类似地,每个机器学习模型都试图使用不同的数据集来解决目标不同的问题,因此,在选择度量标准之前了解背景是很重要的。
最常用的度量
在第一篇博客中,我们将只讨论回归中的度量。
回归度量
大多数博客都关注分类指标,比如精确性、召回率、AUC等。为了改变这一点,我想探索各种指标,包括回归中使用的指标。MAE和RMSE是连续变量最常用的两种度量方法。
RMSE(均方根误差)
它表示预测值和观测值之间差异的样本标准差(称为残差)。从数学上讲,它是使用以下公式计算的:
MAE
MAE是预测值和观测值之间绝对差的平均值。MAE是一个线性分数,这意味着所有的个体差异在平均值中的权重相等。例如,10和0之间的差是5和0之间的差的两倍。然而,RMSE的情况并非如此,我们将进一步详细讨论。从数学上讲,MAE是使用以下公式计算的:
你应该选哪一个?为什么?
好吧,理解和解释MAE是很容易的,因为它直接取偏移量的平均值。与此对比,RMSE比MAE惩罚更高的差异。
让我们用两个例子来理解上面的陈述:
案例1:实际值=[2,4,6,8],预测值=[4,6,8,10]
案例2:实际值=[2,4,6,8],预测值=[4,6,8,12]
「案例1的MAE=2,案例1的RMSE=2」
「病例2的MAE=2.5,病例2的RMSE=2.65」
从上面的例子中,我们可以看到RMSE比MAE对最后一个值预测的惩罚更重。通常,RMSE的惩罚高于或等于MAE。它等于MAE的唯一情况是当所有的差异都等于或为零(在情况1中,所有观测值的实际和预测之间的差异都为2)。
然而,即使在更为复杂和偏向于更高的偏差之后,RMSE仍然是许多模型的默认度量,因为用RMSE定义的损失函数是光滑可微的,并且更容易执行数学运算。
虽然这听起来不太令人愉快,但这是一个非常重要的原因,使它非常受欢迎。我将试着用数学的方法解释上面的逻辑。
让我们在一个变量中建立一个简单的线性模型:y=mx+b
在这里,我们试图找到“m”和“b”,我们有数据(x,y)。
如果我们用RMSE定义损失函数(J):那么我们可以很容易得到m和b的梯度(使用梯度下降的工作原理)
上述方程的求解比较简单,但是却不适用于MAE。
然而,如果你只想从解释的角度比较两个模型,那么我认为MAE是一个更好的选择。需要注意的是,RMSE和MAE的单位都与y值相同,因为RMSE的公式进行了开根操作。RMSE和MAE的范围是从0到无穷大。
❝「注意」:MAE和RMSE之间的一个重要区别是,最小化一组数字上的平方误差会得到平均值,最小化绝对误差会得到中值。这就是为什么MAE对异常值是健壮的,而RMSE不是。
❞
R方(R^2)与调整R方
R方与调整R方通常用于解释目的,并解释所选自变量如何很好地解释因变量的可变性。
从数学上讲,R方由以下公式给出:
分子是MSE(残差平方的平均值),分母是Y值的方差。MSE越高,R方越小,模型越差。
调整R方
与R方一样,调整R方还显示了曲线或直线的拟合程度,但会根据模型中项的变化进行调整。公式如下:
其中n是样本总数,k是变量数。调整R方始终小于或等于R方
为什么要选择调整R方而不是R方
常规的R方存在一些问题,可以通过调整R方来解决。调整R方将考虑模型中附加项所增加的边际改进。所以如果你加上有用的数据,它会增加,如果你加上不那么有用的变量,它会减少。
然而,R方会随着数据的增加而增加,但是模型并没有任何改进。用一个例子来理解这一点会更容易。
这里,情况1是一个简单的情况,我们有5个(x,y)的观测值。在案例2中,我们还有一个变量,它是变量1的两倍(与var 1完全相关)。在案例3中,我们在var2中产生了一个轻微的扰动,使得它不再与var1完全相关。
因此,如果我们为每一种情况拟合简单的普通最小二乘(OLS)模型,那么在逻辑上,我们就不会为情况2和情况3提供关于情况1的任何额外或有用的信息。因此,我们的度量值在这些模型上不应该增加。对于情况2和情况3,R方会增加或与之前相等。调整R方可以解决这个问题,在情况2和情况3调整R方会减少。让我们给这些变量(x,y)一些数字,看看Python中得到的结果。
❝注:模型1和模型2的预测值都是相同的,因此,R方也将是相同的,因为它只取决于预测值和实际值。
❞
从上表中,我们可以看到,尽管我们没有在案例1和案例2中添加任何附加信息,但R方仍在增加,而调整R方显示出正确的趋势(对更多变量的模型2进行惩罚)
调整R方与RMSE的比较
对于上一个示例,我们将看到案例1和案例2的RMSE与R方类似。在这种情况下,调整后的R方比RMSE做得更好,RMSE的范围仅限于比较预测值和实际值。
此外,RMSE的绝对值实际上并不能说明模型有多糟糕。它只能用于两个模型之间的比较,而调整R方很容易做到这一点。例如,如果一个模型的调整R方为0.05,那么它肯定很差。
然而,如果你只关心预测的准确性,那么RMSE是最好的。它计算简单,易于微分,是大多数模型的默认度量。
「常见的误解是」:我经常在网上看到R的范围在0到1之间,这实际上不是真的。R方的最大值为1,但最小值可以为负无穷大。考虑这样一种情况,即模型预测所有观测值的高度负值,即使y的实际值为正值。在这种情况下,R方将小于0。这是极不可能的情况,但这种可能性仍然存在。
NLP中的一个度量
如果你对NLP感兴趣,这里有一个有趣的度量。
BLEU
它主要用于衡量机器翻译相对于人工翻译的质量。它使用一种改进的精度度量形式。
计算BLEU分数的步骤:
将句子转换成单元、双元、三元和四元(unigrams, bigrams, trigrams, and 4-grams)
对于大小为1到4的n-gram计算精度
取所有这些精度值的加权平均值的指数
乘以简短的惩罚(稍后解释)
这里BP是简洁性惩罚,r和c是参考词和候选词的个数,w是权重,P是精度值
例子:
参考翻译:The cat is sitting on the mat
机器翻译1:On the mat is a cat
机器翻译2:There is cat sitting cat
让我们把以上两个译文计算BLEU分数进行比较。
我用的是nltk.translate.bleu
最终结果:BLEU(MT1)=0.454,BLEU(MT2)=0.59
为什么我们要加上简洁性惩罚?
简洁性惩罚惩罚候选短于他们的参考翻译。例如,如果候选是“The cat”,那么它对于unigram和bigram将具有高精度,因为这两个词在参考翻译中也是以相同的顺序出现。然而,长度太短,并没有真正反映出实际意义。
有了这个简短性惩罚,高分的候选译文现在必须在长度、单词和单词顺序方面与参考匹配。
原文链接:https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
往期精彩回顾
适合初学者入门人工智能的路线及资料下载机器学习及深度学习笔记等资料打印机器学习在线手册深度学习笔记专辑《统计学习方法》的代码复现专辑
AI基础下载机器学习的数学基础专辑获取一折本站知识星球优惠券,复制链接直接打开:https://t.zsxq.com/yFQV7am本站qq群1003271085。加入微信群请扫码进群: