1.1 引言
随着经济的持续增长,城市人口密度日益增加,人们的消费能力和出行需求也随之提升。社会活动无论是精神层面还是物质层面都要求更高的体验,这也推动了机场、客运站、大型商场等场所的增多。尤其是在节假日和交通高峰期,主要公共场所的人流量显著增加,给这些场所带来了巨大的压力。比如,在五一、国庆等长假期间,人们更倾向于选择远途旅行,尤其是网红城市,这使得机场、高铁等大型公共场所成为旅行的瓶颈。
随着人流量的增加,安全保障的需求也随之提升。各地的安保人员需要做好人群疏散工作,以防止潜在的安全隐患。然而,在实际操作中,长时间的排队、安全检查的等待时间过长、人群密集导致的治安问题等,都会严重影响乘客的出行体验。特别是在大型公共场所,常规的人工监测难以全面覆盖,往往依赖于过往经验,难以应对突发情况。因此,利用计算机技术进行大规模人流密度分析和预测,以解决可能出现的问题,已成为当前亟待研究的课题。
1.2 研究背景
随着经济的快速发展,人们的精神需求不断增长,旅游和远行的需求也随之增加。高铁站、艺术展、演唱会、商业中心以及景区等场所的游客数量不断攀升,随之而来的安全问题引起了社会的高度重视。人们越来越关注外出时的安全问题,担心自己的财产安全是否能得到保障。例如,上海外滩的网红打卡地点,由于人流过多,监控人员未能准确预测和控制人流,导致了一系列悲剧的发生。这提示我们需要改进现有的安保措施,以避免类似事件的再次发生。
视频监控是常见的安保手段之一,但随着公共场所人流的增加,依赖人工监控的成本越来越高,且在人流密度过高时,监控效果也会大打折扣。摄像头可能因人群过于密集而无法清晰拍摄,或者有心之人刻意躲避监控。因此,人力、维护和监测等方面的压力也随之增加,商业和政府部门面临着巨大的挑战。特别是在节假日和春运期间,交通枢纽的人流量剧增,任何不可预见的因素(如天气)都可能导致大量旅客滞留,进一步加剧了监测和安保的难度。传统的监控手段依赖人工判断,缺乏准确性和实时性,难以应对突发事件。因此,利用人工智能技术进行实时监测和预测,成为未来发展的重要趋势。
1.3 研究现状
1.3.1 人群密度估计
人群密度估计主要是通过安装在监控地点的摄像头获取视频数据,将视频分解为静态图像帧,然后利用计算机视觉技术对图像进行处理,识别和跟踪人员,从而估算该地点的人口数量、人群密度和拥挤度。这一技术在现实生活中有广泛的应用需求,主要集中在高铁站、艺术展、演唱会、NBA比赛现场等对安全有高要求的场所。越来越多的研究工作者投入其中,未来这一技术将成为主流,并成为社会必需的工具。
1.3.2 人群密度预测
当前,大规模场景中的人群密度检测在国际和国内都缺乏相关的理论和技术支持。其关键问题在于,由于场景的多源性和多时性特点,难以构建有效的模型体系,需要大量的数据采集和资源浪费。传统的模式辨识方法在实际应用中存在较大难度,尤其是在软硬件结合的复杂性方面,难以满足实际需求。人工智能算法虽然能够提供理论支持,但往往缺乏对算法复杂性和实时性的考量,导致在实践中难以实施。因此,研究人员更多地针对具体场景构建具有较强适应性的数学模型,以模拟和预测人群密度变化


