J-LangChain 入门

介绍

本项目是一个Java版的LangChain开发框架,具有灵活编排和流式执行能力,旨在简化和加速各类大模型应用在Java平台的落地开发。它提供了一组实用的工具和类,使得开发人员能够更轻松地构建类似于LangChain的Java应用程序。

github: https://github.com/flower-trees/j-langchain

快速开始

Maven

<dependency>
    <groupId>io.github.flower-trees</groupId>
    <artifactId>j-langchain</artifactId>
    <version>1.0.8-preview</version>
</dependency>

Gradle

implementation 'io.github.flower-trees:j-langchain:1.0.8-preview'

配置

@Import(JLangchainConfig.class)
public class YourApplication {
    public static void main(String[] args) {
        SpringApplication.run(YourApplication.class, args);
    }
}
export CHATGPT_KEY=xxx-xxx-xxx-xxx

使用

代码下载:https://github.com/flower-trees/j-langchain-example/blob/master/src/main/java/org/salt/jlangchain/demo/chain/build/SimpleBuildExample.java

@Component
public class ChainBuildDemo {

    @Autowired
    ChainActor chainActor;

    public void SimpleDemo() {

        BaseRunnable<StringPromptValue, ?> prompt = PromptTemplate.fromTemplate("tell me a joke about ${topic}");
        ChatOpenAI chatOpenAI = ChatOpenAI.builder().model("gpt-4").build();

        FlowInstance chain = chainActor.builder().next(prompt).next(oll).next(new StrOutputParser()).build();

        ChatGeneration result = chainActor.invoke(chain, Map.of("topic", "bears"));
        System.out.println(result);
    }
}

💡 Notes:

文档

智能链

RAG

Agent

### LangChain4j入门教程 #### 3.1 初识LangChain4j LangChain4j是一个强大的AI框架,旨在通过智能化的方式提升开发者的工作效率并简化复杂任务处理过程。对于初次接触该工具的技术人员来说,理解其核心概念和应用场景至关重要[^1]。 #### 3.2 安装配置环境 为了开始使用LangChain4j,在本地环境中安装必要的依赖项是第一步。这通常涉及到设置Java运行时环境以及下载官方提供的SDK包。确保遵循官方文档中的指导完成这些准备工作可以避免后续可能出现的基础性错误。 ```bash # 示例命令用于安装JDK (仅作为示例, 实际操作需参照具体版本说明) sudo apt-get install default-jdk ``` #### 3.3 编写第一个程序 当环境搭建完成后,可以通过创建简单的应用程序来熟悉API接口调用方式。比如尝试实现一个自动化的代码片段生成功能,利用内置模板快速生成符合特定模式的源码文件。这种练习有助于加深对框架特性的认识。 ```java // Java代码示例:简单应用展示如何初始化LangChain4j客户端 import com.langchain.client.LangChainClient; public class FirstApp { public static void main(String[] args) { // 创建一个新的LangChain客户端实例 LangChainClient client = new LangChainClient(); System.out.println("欢迎来到LangChain4j的世界!"); } } ``` #### 3.4 遇到挑战与解决方法 ##### 数据集准备不足 在实际项目中,如果数据量不够充分或者质量不高,则可能导致训练效果不佳等问题。此时建议收集更多高质量的数据样本,并考虑采用预处理手段提高数据可用性。 ##### 提示工程技术难题 有效运用提示工程(Prompt Engineering),即合理设计输入给定条件下的自然语言指令,对于发挥大型模型的最佳性能非常重要。面对这一难点,学习最佳实践案例、参与社区交流都是不错的解决方案[^3]。 ##### 整合现有业务逻辑 将先进的AI能力融入传统信息系统并非易事,尤其是在保持原有架构稳定性和安全性的同时引入新特性。针对这种情况,逐步迭代升级策略往往更为稳妥;另外也可以寻求专业的咨询服务支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值