点到平面的距离公式推导

点到平面的距离公式

准备知识

平面的一般式方程

Ax +By +Cz + D = 0

其中n = (A, B, C)是平面的法向量,D是将平面平移到坐标原点所需距离(所以D=0时,平面过原点)

向量的模(长度)

给定一个向量V(x, y, z),则|V| = sqrt(x * x + y * y + z * z)

向量的点积(内积)

给定两个向量V1(x1, y1, z1)和V2(x2, y2, z2)则他们的内积是

V1V2 = x1x2 + y1y2 + z1z2

点到平面的距离

有了上面的准备知识,则求点到直线的距离不再是难事,有图有真相


如果法相量是单位向量的话,那么分母为1

### 计算点到平面距离 在点云配准过程中,计算点到平面距离是一项关键技术。通常情况下,该距离用于评估两个点云之间的拟合程度以及优化变换参数。 对于一个已知法向量 \( \mathbf{n}=(a,b,c)^{T} \) 和平面上一点 \( P_{0}(x_0,y_0,z_0) \),可以定义平面方程为: \[ ax + by + cz + d = 0 \] 其中, \[ d=-(ax_0+by_0+cz_0) \] 设有点 \( Q(x_q, y_q, z_q) \),则点Q到上述平面的距离D可由下述闭式公式表示[^1]: \[ D=\frac{|ax_q+by_q+cz_q+d|}{\sqrt{a^{2}+b^{2}+c^{2}}} \] 此公式推导基于几何原理中的垂直投影概念,在实际编程实现时可以直接利用这个公式快速获得所需结果。 下面给出Python代码片段来展示具体的实现方式: ```python import numpy as np def point_to_plane_distance(point, plane_normal, plane_point): """ Calculate the distance from a single point to a given plane. Args: point (np.array): Coordinates of query point [x, y, z]. plane_normal (np.array): Normal vector of target plane [nx, ny, nz]. plane_point (np.array): Any known point on the target plane [px, py, pz]. Returns: float: Distance between input point and specified plane. """ # Compute 'd' value according to plane equation d = -plane_normal.dot(plane_point) numerator = abs(np.sum(plane_normal * point) + d) denominator = np.sqrt(np.sum(plane_normal ** 2)) return numerator / denominator # Example usage if __name__ == "__main__": pnt = np.array([1., 2., 3.]) # Query Point coordinates pln_nml = np.array([-1., 0., 0.5]) # Plane normal vector pln_pnt = np.array([4., 5., 6.]) # Known point lying within the same plane dist = point_to_plane_distance(pnt, pln_nml, pln_pnt) print(f"The calculated distance is {dist:.4f}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值