点到平面距离推导

平面方程表示

“平面方程”是指空间中所有处于同一平面的点所对应的方程,其一般式形如Ax+By+Cz+D=0。

  • 表示方法

    截距式x/a+y/b+z/c=1
    点法式A(x-x0)+B(y-y0)+C(z-z0)=0
    一般式Ax+By+Cz+D=0
    法线式xcosα+ycosβ+zcosγ=p
一、截距式

设平面方程为Ax+By+Cz+D=0,若D不等于0,取a=-D/A,b=-D/B,c=-D/C,则得平面的截距式方程:**x/a+y/b+z/c=1 **

它与三坐标轴的交点分别为P(a,0,0),Q(0,b,0),R(0,0,c),其中,a,b,c依次称为该平面在x,y,z轴上的截距。

二、点法式

n为平面的法向量,n=(A,B,C),M,M’为平面上任意两点,

则有n·MM’=0,MM’=(x-x0,y-y0,z-z0),

img

从而得平面的点法式方程:

A(x-x0)+B(y-y0)+C(z-z0)=0

三点求平面可以取向量积为法线

两平面互相垂直相当于A1A2+B1B2+C1C2=0

两平面平行或重合相当于A1/A2=B1/B2=C1/C2

点到平面的距离=abs(Ax0+By0+Cz0+D)/sqrt(A2+B2+C^2) 求解过程:面内外两点连线在法向量上的映射Prj(小n)(带箭头P1P0)=数量积

三、一般式

Ax+By+Cz+D=0 ,其中A,B,C,D为已知常数,并且A,B,C不同时为零。

四、法线式

xcosα+ycosβ+zcosγ=p ,其中cosα、cosβ、cosγ是平面法矢量的方向余弦,p为原点到平面的距离。



点到平面距离的推导

在这里插入图片描述

d取绝对值前为正则Q点在平面同侧,反之异侧。

参考:

https://baike.baidu.com/item/平面方程/9949549?fr=aladdin

https://baike.baidu.com/item/点到平面距离/10690055

https://blog.csdn.net/Hunter_pcx/article/details/78573256

### 计算点到平面距离云配准过程中,计算点到平面距离是一项关键技术。通常情况下,该距离用于评估两个云之间的拟合程度以及优化变换参数。 对于一个已知法向量 \( \mathbf{n}=(a,b,c)^{T} \) 和平面上一 \( P_{0}(x_0,y_0,z_0) \),可以定义平面方程为: \[ ax + by + cz + d = 0 \] 其中, \[ d=-(ax_0+by_0+cz_0) \] 设有 \( Q(x_q, y_q, z_q) \),则Q到上述平面距离D可由下述闭式公式表示[^1]: \[ D=\frac{|ax_q+by_q+cz_q+d|}{\sqrt{a^{2}+b^{2}+c^{2}}} \] 此公式的推导基于几何原理中的垂直投影概念,在实际编程实现时可以直接利用这个公式快速获得所需结果。 下面给出Python代码片段来展示具体的实现方式: ```python import numpy as np def point_to_plane_distance(point, plane_normal, plane_point): """ Calculate the distance from a single point to a given plane. Args: point (np.array): Coordinates of query point [x, y, z]. plane_normal (np.array): Normal vector of target plane [nx, ny, nz]. plane_point (np.array): Any known point on the target plane [px, py, pz]. Returns: float: Distance between input point and specified plane. """ # Compute 'd' value according to plane equation d = -plane_normal.dot(plane_point) numerator = abs(np.sum(plane_normal * point) + d) denominator = np.sqrt(np.sum(plane_normal ** 2)) return numerator / denominator # Example usage if __name__ == "__main__": pnt = np.array([1., 2., 3.]) # Query Point coordinates pln_nml = np.array([-1., 0., 0.5]) # Plane normal vector pln_pnt = np.array([4., 5., 6.]) # Known point lying within the same plane dist = point_to_plane_distance(pnt, pln_nml, pln_pnt) print(f"The calculated distance is {dist:.4f}") ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值