svm学习中遇到的数学难点

关于KKT条件下的最优化问题

其中g是不等式约束,h是等式约束,那么KKT条件就是函数的最优值,它必定满足下面条件:

 难点:第三个式子不好理解,第三个条件为互补松弛条件。

以最简单的最优化问题形式为例:

 假设

 那么对于该例子,使用拉格朗日乘数法进行转化并设g函数

转化为对偶问题

 

同时设p*的解为x*,d*的解为λ*和n*

那么,可将假设的解带入d*中进行如下推导: 

 

又由于约束条件

因此可得 为0,可删去,

又因为一开始条件就有

可得: 

 又因为经过拉格朗日函数的转换,svm问题转化为对偶问题,具有强对偶性,因此根据对偶问题的定义

那么 

图中的小于等于号只能取等于

因此可得结论 

该条件就是互补松弛条件。

 smo算法

 在经过拉格朗日转化以及优化后最终得到的式子为:

 

为了求解上面含有这两个变量的目标优化问题,我们首先分析约束条件,所有的α1,α2α1,α2都要满足约束条件,然后在约束条件下求最小。

    根据上面的约束条件α1y1+α2y2=ς,0≤αi≤Ci=1,2α1y1+α2y2=ς,0≤αi≤C,i=1,2,又由于y1,y2y1,y2均只能取值1或者-1, 这样α1,α2α1,α2在[0,C]和[0,C]形成的盒子里面,并且两者的关系直线的斜率只能为1或者-1,也就是说α1,α2α1,α2的关系直线平行于[0,C]和[0,C]形成的盒子的对角线,如下图所示:

 

         由于α1,α2的关系被限制在盒子里的一条线段上,所以两变量的优化问题实际上仅仅是一个变量的优化问题

        假设最终是α2的优化问题。由于我们采用的是启发式的迭代法,假设我们上一轮迭代得到的解是a_{1}^{old},a_{2}^{old}假设沿着约束方向α2未经剪辑的解是a_{2}^{new,unc},本轮迭代完成后的解为a_{1}^{new},a_{2}^{new}

未经剪辑是因为在进行求导后的a2应满足条件,若超出最高或低于最低应选择临界线处作为a2的值。

由于a_{2}^{new}必须满足上图中的线段约束。假设L和H分别是上图中a_{2}^{new}a_{2}^{new}所在的线段的边界。那么很显然有:  

L≤a_{2}^{new}≤H

对于L和H,我们也有限制条件如果是上面左图中的情况,则

    如果是上面右图中的情况,我们有:

假如我们通过求导得到的a_{2}^{new,unc}则最终的a_{2}^{new}应该为:b_{}^{new}

 之后只需要将目标函数对α2求偏导数求得a_{2}^{new,unc}

 具体求解步骤如下:

 最后得到a_{2}^{new,unc}的表达式:

再经过剪辑得到a_{2}^{new}

再利用a_{2}^{new}a_{1}^{new}的线性关系,我们也可以得到新的a_{1}^{new}。 

由于对a1,a2进行了优化,因此需要重新计算阈值b,当0<a_{1}^{new}<C时,有:

于是新的b_{1}^{new}为: 

计算出E1为:

可以看到上面两个式子都有相同的 

因此可以将b_{1}^{new}用E1表示为: 

 最终的b_{}^{new}

  

得到了b_{}^{new}后我们需要更新Ei

最终迭代将各个参数求得。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值