显示器的长宽比主要有哪几种比例,以及他们对应的分辨率?

本文列举了不同类型的显示器,包括普屏和宽屏的常见分辨率和尺寸,如5:4、4:3的普屏以及16:10、16:9的宽屏显示器。详细列出了从13.3到27吋的各种尺寸的LCD和CRT显示器的分辨率,包括笔记本电脑的屏幕规格。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. 普屏

5:4

4:3

2. 宽屏

16:10

16:9


1. 普屏

5:4

1280×1024(17吋、19吋)

4:3

800×600

1024×768(17吋CRT、15吋LCD)

1280×960

1400×1050(20吋)


1600×1200(20、21、22吋LCD)

1920×1440

2048×1536(高端CRT显示器)

2. 宽屏

16:10

1280×800(13.3、14.1、15.4吋笔记本)

1440×900(17.1吋、19吋)、

1680×1050(20吋、21.6吋、22吋)

1920×1200(22、24、25.5、27、27.5)

16:9

1280×720(17吋)

1366×768&1360×768(18.5吋)

1600×900 (20吋)

1920×1080(21.5、23、23.6、24、24.6、25、27)。

### 关于图片分辨率长宽比筛选的方法 为了实现基于长宽比和分辨率的图片筛选功能,可以利用多种编程语言中的图像处理库来完成这一任务。以下是具体方法以及推荐使用的工具。 #### 方法概述 通过读取每张图片的元数据(如宽度、高度),计算其长宽比并比较是否满足指定条件,从而决定保留或剔除该图片。Python 是一种常用的语言,其中 `Pillow` 和 `OpenCV` 库提供了强大的支持用于此类操作[^2]。 #### 使用 Pillow 实现筛选逻辑 下面是一个简单的 Python 脚本示例,展示如何使用 Pillow 来筛选符合条件的图片: ```python from PIL import Image import os def filter_images_by_ratio_and_resolution(directory, target_aspect_ratio=(16, 9), min_width=1080, min_height=720): valid_images = [] for filename in os.listdir(directory): try: with Image.open(os.path.join(directory, filename)) as img: width, height = img.size # 计算当前图片的实际长宽比 current_ratio = width / height target_ratio = target_aspect_ratio[0] / target_aspect_ratio[1] # 判断是否符合给定的长宽比范围 if abs(current_ratio - target_ratio) < 0.05 and width >= min_width and height >= min_height: valid_images.append(filename) except Exception as e: print(f"Error processing {filename}: {e}") return valid_images # 示例调用 filtered_images = filter_images_by_ratio_and_resolution("/path/to/images", (16, 9)) print(filtered_images) ``` 此脚本遍历目录下的所有文件,打开它们作为图像对象,并检查尺寸是否达到最低标准以及是否有接近目标的长宽比。 #### OpenCV 的替代方案 如果更倾向于使用 OpenCV,则可以通过如下方式实现相同的功能: ```python import cv2 import os def opencv_filter_images(directory, aspect_ratio=(16, 9), min_dim=(1080, 720)): filtered_files = [] for file_name in os.listdir(directory): path = os.path.join(directory, file_name) image = cv2.imread(path) if image is not None: h, w = image.shape[:2] ratio_diff = abs((w/h) - (aspect_ratio[0]/aspect_ratio[1])) dim_check = all([d >= m for d,m in zip(image.shape[:2], reversed(min_dim))]) if ratio_diff < 0.05 and dim_check: filtered_files.append(file_name) return filtered_files opencv_filtered = opencv_filter_images('/path/to/images', (16, 9)) print(opencv_filtered) ``` 上述代码同样实现了对特定路径下所有图片按设定参数过滤的过程。 #### 总结 无论是采用 Pillow 还是 OpenCV,都可以高效地完成针对图片集合依据分辨率长宽比的要求进行筛选的任务。这两种方法各有优劣,在实际应用时可根据项目需求和个人偏好做出选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值