向量点乘(内积)和叉乘(外积、向量积)概念及几何意义解读

https://blog.csdn.net/dcrmg/article/details/52416832?spm=1001.2101.3001.6661.1&utm_medium=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-52416832-blog-121204216.pc_relevant_3mothn_strategy_recovery&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-52416832-blog-121204216.pc_relevant_3mothn_strategy_recovery&utm_relevant_index=1

https://blog.csdn.net/weixin_46398948/article/details/121204216

二维向量叉乘


A=(a1,a2)
B=(b1,b2)

A×B
=(a1,a2)×(b1,b2)
=a1b2-a2b1


三维向量叉乘


A=(a1,a2,a3)
B=(b1,b2,b3)

A×B
=(a1,a2,a3)×(b1,b2,b3)
=(a2b3-a3b2,a3b1-a1b3,a1b2-a2b1)
 

向量是由n个实数组成的一个n行1列(n*1)或一个1行n列(1*n)的有序数组;

向量的点乘,也叫向量的内积、数量积,对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,点乘的结果是一个标量。

点乘公式

对于向量a和向量b:

                                                           

a和b的点积公式为:

要求一维向量a和向量b的行列数相同。

点乘几何意义

点乘的几何意义是可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影,有公式:

推导过程如下,首先看一下向量组成:

定义向量:

根据三角形余弦定理有:

根据关系c=a-b(a、b、c均为向量)有:

即:

向量a,b的长度都是可以计算的已知量,从而有a和b间的夹角θ:

根据这个公式就可以计算向量a和向量b之间的夹角。从而就可以进一步判断这两个向量是否是同一方向,是否正交(也就是垂直)等方向关系,具体对应关系为:


     a·b>0    方向基本相同,夹角在0°到90°之间

     a·b=0    正交,相互垂直  

     a·b<0    方向基本相反,夹角在90°到180°之间 

叉乘公式

两个向量的叉乘,又叫向量积、外积、叉积,叉乘的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量组成的坐标平面垂直。

对于向量a和向量b:

a和b的叉乘公式为:

其中:

根据i、j、k间关系,有:

叉乘几何意义

在三维几何中,向量a和向量b的叉乘结果是一个向量,更为熟知的叫法是法向量,该向量垂直于a和b向量构成的平面。

在3D图像学中,叉乘的概念非常有用,可以通过两个向量的叉乘,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。如下图所示: 

在二维空间中,叉乘还有另外一个几何意义就是:aXb等于由向量a和向量b构成的平行四边形的面积。

向量都是向量运算,但它们有不同的定义应用。 向量(又称为内积或数量)是两个向量再求,其结果是一个标量。的定义为: $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$ 其中,$\vec{a}=(a_1,a_2,a_3)$$\vec{b}=(b_1,b_2,b_3)$是两个三维向量几何意义是:$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\theta$,其中$\theta$是$\vec{a}$$\vec{b}$之间的夹角,$|\vec{a}|$$|\vec{b}|$分别是$\vec{a}$$\vec{b}$的模。的结果可以用来计算向量的长度、判断两个向量是否垂直或平行、计算向量之间的夹角投影等。 向量(又称为外积向量)是两个向量得到另一个向量,其结果是一个向量的定义为: $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = (a_2 b_3 - a_3 b_2) \hat{i} + (a_3 b_1 - a_1 b_3) \hat{j} + (a_1 b_2 - a_2 b_1) \hat{k}$ 其中,$\hat{i}$、$\hat{j}$$\hat{k}$是三个基向量,$\vec{a}=(a_1,a_2,a_3)$$\vec{b}=(b_1,b_2,b_3)$是两个三维向量几何意义是:$\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin\theta \hat{n}$,其中$\theta$是$\vec{a}$$\vec{b}$之间的夹角,$|\vec{a}|$$|\vec{b}|$分别是$\vec{a}$$\vec{b}$的模,$\hat{n}$是垂直于$\vec{a}$$\vec{b}$所在平面的单位向量的结果可以用来计算向量之间的夹角、计算面、判断向量之间的方向等。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值