利用Python进行售后数据分析

该项目旨在确定售后先退款后退货的合理范围,通过对2019年以来的售后服务单数据进行分析。主要任务包括统计50k-200k服务单的数量、客户数量和金额,并分析提交售后服务单后客户的再次购买情况。已完成数据匹配和整理,涉及SQL查询和Excel明细写入,后续将继续处理数据并计算下单时间间隔。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

项目目标:

为了确定售后先退款后退货(flash refund,平台先退款客户后寄回商品)的合理范围,需要对目前确定的方案进行核查,每个月的flash refund不能超过预算(budget);

任务目标:

1. 提交退货的售后服务单中50k-200k的服务单数量、客户数量、服务单金额;

2. 1拆解至提交及审核通过;

3. 提交及审核通过后客户再次来购买的订单金额、订单数量、客户数量;

已有数据:

2019年1月1日到目前提交售后服务单的所有数据(前期已花费时间获取此数据)

 

先完成1-2

# 启动jupyter notebook
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import datetime as dt
from openpyxl import load_workbook
import os
%matplotlib inline

# 读
audit = pd.read_excel('return audit daily 1028.xlsx',na_values=np.NaN)
# 查看已有的字段
audit.columns
# 添加列日期及月
audit['date'] = pd.to_datetime(audit['apply_tm'])
audit['month'] = audit['date'].apply(lambda x : x.month)
# 查看审核结果的唯一值,如果有其他值,需要在前一步进行替换
audit['audit_result'].unique()
# 查看所有的客户期望结果
audit['cust_expect'].unique()

# 筛选客户希望结果为退货的所有数据
audit_return = audit[audit.cust_expect == 'Return Commodity']
# 筛选金额在50k-200k之间的所有数据
audit_flash = audit_return[(audit_return.sku_price <=200000) & (audit_return.sku_price>50000)]

# IDR amount  总金额
audit1d_pivot_1 = audit_flash.pivot_table(
    values = 'sku_price',
    aggfunc = 'sum',
#     index = ['audit_result'],
    columns = 'month',
#     margins = True,
#     margins_name= 'Total',
    fill_value = '-'
)

# 筛选审核通过的服务单
audit_flash_2 = audit_flash[(audit_flash['audit_result'].isin(['Customer Delive
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值