项目目标:
为了确定售后先退款后退货(flash refund,平台先退款客户后寄回商品)的合理范围,需要对目前确定的方案进行核查,每个月的flash refund不能超过预算(budget);
任务目标:
1. 提交退货的售后服务单中50k-200k的服务单数量、客户数量、服务单金额;
2. 1拆解至提交及审核通过;
3. 提交及审核通过后客户再次来购买的订单金额、订单数量、客户数量;
已有数据:
2019年1月1日到目前提交售后服务单的所有数据(前期已花费时间获取此数据)
先完成1-2
# 启动jupyter notebook
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import datetime as dt
from openpyxl import load_workbook
import os
%matplotlib inline
# 读
audit = pd.read_excel('return audit daily 1028.xlsx',na_values=np.NaN)
# 查看已有的字段
audit.columns
# 添加列日期及月
audit['date'] = pd.to_datetime(audit['apply_tm'])
audit['month'] = audit['date'].apply(lambda x : x.month)
# 查看审核结果的唯一值,如果有其他值,需要在前一步进行替换
audit['audit_result'].unique()
# 查看所有的客户期望结果
audit['cust_expect'].unique()
# 筛选客户希望结果为退货的所有数据
audit_return = audit[audit.cust_expect == 'Return Commodity']
# 筛选金额在50k-200k之间的所有数据
audit_flash = audit_return[(audit_return.sku_price <=200000) & (audit_return.sku_price>50000)]
# IDR amount 总金额
audit1d_pivot_1 = audit_flash.pivot_table(
values = 'sku_price',
aggfunc = 'sum',
# index = ['audit_result'],
columns = 'month',
# margins = True,
# margins_name= 'Total',
fill_value = '-'
)
# 筛选审核通过的服务单
audit_flash_2 = audit_flash[(audit_flash['audit_result'].isin(['Customer Delive