这篇来讲一下博主的研究方向,也就是机电产品的寿命预测。这个预测过程会综合运用到本专栏介绍的各种信号处理方法,所以即使对于不是研究该方向的同学来说,看一下这个文章也同样会有所裨益。
机电产品寿命预测也就是给各种机械电子产品“算命”,即计算“剩余寿命”。这么做是为了保证机电设备在高可靠性条件下运行,同时避免过度维护导致的浪费。
比较常用的寿命预测的方法(大类)有两种*,分别为“基于故障物理”和“基于数据驱动”的方法。前者在本专栏中不做过多讨论,毕竟这个专栏是讲信号处理的,自然更关注“数据”。所谓基于数据驱动,就是通过采集产品的失效数据、退化数据,并基于统计、退化、可靠性函数以及人工智能方法进行预测的研究。
基于数据驱动的方法也有好几个分支,本篇采用的方法将其分作三类**:相似模型法、退化模型法和生存模型法。
本篇将作为提纲,将这三种方法的原理、思路和流程进行简单介绍,目的在于快速熟悉方法种类及特点,为在做类似研究方向的同学提供一些选择上的帮助。后边的文章将分别针对这三种方法使用MATLAB进行案例实现。
预测方法主要包括:
图1 剩余使用寿命(RUL)方法分类
1. 相似模型法
相似模型法很好理解:当我们知道一千对齿轮逐渐坏掉的过程时,就很容易推测一对用了一段时间的齿轮未来的损坏趋势。
相似模型法依赖于相似产品的历史数据,且该历史数据最好具有以下两个特征:
① 数据从正常运行状态开始采集,直至产品接近失效或维护为止。
② 运行数据有退化趋势。
图2 蓝线为相似产品退化过程,红线为待预测产品退化过程
图1给出了三种相似模型方法,它们都在matlab中有内置函数,除此之外还有其他建模方法,下一篇中将举例对整个基于相似性的建模方法和预测流程进行讲解。
由于使用相似产品的数据,该方法的预测精度和鲁棒性都比较好。所以该方法可以作为首选的预测方法。
但同样因为需要用到相似产品数据,使得该方法存在着局限性——有着大量的设备是不存在历史数据的。这时候就需要以下两种预测方法了。
2. 退化模型法
在看过的论文中,这种方法占了主流。
与相似模型不同的是,这种方法不需要相似产品历史数据,只需要预测的对象的退化数据就可以。也就是对象产品做过一段时间实验就可以。
图3 风力涡轮机健康指数退化曲线
比如上图是经过特征提取之后的风力涡轮机的健康指数的退化曲线,此时我们要预测未来该怎么做呢?
用线性模型进行拟合
用指数模型进行拟合
用ARMA模型进行拟合
用深度学习方法进行训练
…
这些方法都可以,我们在拟合/训练之后得到的就是这段数据的退化模型。在知道产品失效时的健康指数之后,剩余寿命预测就很简单了。
但是这种方法的缺点也很明显:
一方面,要进行剩余寿命预测需要知道失效阈值,不过很多时候表征退化的参数是经过抽象的,在物理含义上不易解释;同时没有产品失效时的历史数据,使得该失效阈值的获取也存在困难。
另一方面,模型的预测误差会随着预测长度的增加而不断积累,长期预测时精度较差。
3. 生存模型法
生存模型被分为两个具体方法:可靠性生存模型和协变量生存模型。
首先说可靠性生存模型,这个模型不需要产品的退化数据,只需要知道寿命分布就行。比如刚刚提到的风力涡轮机,现在我们有很多个同类涡轮机的寿命数据,但是没有退化数据,也就是知道它多长时间坏的,不知道坏的过程,就可以用到这个可靠性生存模型。它是用分布来描述的,比如通过统计,我们知道了这个产品寿命为平均寿命是2000小时,标准差为100小时的正态分布,那么对于一个已经使用了500小时的涡轮机,它的剩余寿命就是均值1500小时,标准差100小时的正态分布。很简单是吧。
再来说协变量生存模型。有时候我们除了产品的失效数据,还知道一些环境变量或者解释变量。比如产品制造商、产品使用方式或者制造批次等。在这种情况下,使用协变量生存模型,可以结合寿命和协变量来计算目标组件的生存概率。
*也有分为“基于统计的方法”、“基于人工智能方法”、“基于模型方法”等不同的分类方法的。
**也有分为“基于失效数据”、“基于退化数据”、“多源数据融合”的寿命预测方法的。
参考:
《数据驱动的寿命预测和健康管理技术研究进展》
后边三篇文章将针对这三种方法分别举一个例子进行说明,并使用MATLAB实现。欢迎关注我的公众号“看海的城堡”,微信号为“khscience”,会有更多有趣的东西分享。