19、嵌套选择结构:编程中的决策艺术

嵌套选择结构:编程中的决策艺术

在编程的世界里,决策是一项至关重要的技能。当我们需要根据不同的条件执行不同的操作时,选择结构就派上了用场。而嵌套选择结构,则是在选择结构的基础上进一步扩展,让我们能够处理更加复杂的决策场景。下面,我们将深入探讨嵌套选择结构的原理、应用以及具体的操作步骤。

1. 嵌套选择结构的基本概念

选择结构是编程中常用的一种结构,它允许计算机根据条件的真假来决定执行哪一组指令。当一个选择结构的真路径或假路径中包含另一个选择结构时,这个内部的选择结构就被称为嵌套选择结构。嵌套选择结构必须完全包含在外部选择结构的真路径或假路径中,这样才能确保其正常工作。

为了更好地理解嵌套选择结构,我们来看几个具体的例子。

2. 篮球练习问题示例
2.1 简单选择结构示例

假设篮球运动员 Maleek 正在为即将到来的篮球比赛进行练习。我们需要编写指令,让 Maleek 投篮,并根据篮球是否投进篮筐来说出相应的短语。这个问题只需要一个简单的选择结构,因为只需要判断一个条件:篮球是否投进篮筐。

1. 投篮
2. 如果篮球投进篮筐,执行以下操作:
        说 “我做到了!”
    否则,执行以下操作:
        说 “没投进!”
    结束判断

这个算法的流程图如下:

graph TD;
    A[投篮] --> B{篮球投进篮筐?};
    B -- 是 --> C[说 “我做
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值