参考的网址: https://blog.csdn.net/hu_guan_jie/article/details/78495297
程序没有改动,添加了图
1.
下面程序的功能是,做5次循环,每次循环给x加1,赋值给y,然后打印出来,所以我们预期达到的效果是输出2,3,4,5,6。
import tensorflow as tf
#下面程序的功能是,做5次循环,每次循环给x加1,赋值给y,然后打印出来,
# 所以我们预期达到的效果是输出2,3,4,5,6
x = tf.get_variable('x',initializer=1.0)
y = tf.get_variable('y',initializer=0.0)
#返回一个op,表示给变量x加1的操作
x_plus_1 = tf.assign_add(x, 1,name='x_plus_1')
#control_dependencies的意义是,在执行with包含的内容(在这里就是 y = x)前,
#先执行control_dependencies参数中的内容(在这里就是 x_plus_1),这里的解释不准确,先接着看。。。
with tf.control_dependencies([x_plus_1]):
y = x
with tf.Session() as session:
tf.global_variables_initializer().run()
for i in range(5):
print(y.eval()) # 1 1 1 1 1
#相当于sess.run(y),按照我们的预期,由于control_dependencies的作用,
# 所以应该执行print前都会先执行x_plus_1,但是这种情况会出问题
writer = tf.summary.FileWriter("./path/to/loga",tf.get_default_graph())
writer.close()
可以看到,value值并没有从(x)中读出来,中间差一个节点
2.
import tensorflow as tf
x = tf.get_variable('x',initializer=1.0)
y = tf.get_variable('y',initializer=0.0)
x_plus_1 = tf.assign_add(x, 1,name='x_plus_1')
with tf.control_dependencies([x_plus_1]):
y = tf.identity(x,name='x_identity')#修改部分
with tf.Session() as session:
tf.global_variables_initializer().run()
for i in range(5):
print(y.eval())# 2 3 4 5 6
writer = tf.summary.FileWriter("./path/to/loga",tf.get_default_graph())
writer.close()
# 如果改为输出 print(sess.run(y)) ,则结果为 1,1,1,1,1
解释:这里每次都将read出来的值加1,对于control_dependencies这个管理器,只有当里面的操作是一个op时,才会生效,也就是先执行传入的参数op,再执行里面的op。而y=x仅仅是tensor的一个简单赋值,不是定义的op,所以在图中不会形成一个节点,这样该管理器就失效了。tf.identity是返回一个一模一样新的tensor的op,这会增加一个新节点到gragh中,这时control_dependencies就会生效,所以第二种情况的输出符合预期。