MAP评价指标在faster-rcnn中的使用

Mean Average Precision(MAP):平均精度均值

1.MAP可以由它的三个部分来理解:P,AP,MAP

P(Precision)精度,正确率。在信息检索领域用的比较多,和正确率一块出现的是召回率Recall。对于一个查询,返回了一系列的文档,正确率指的是返回的结果中相关的文档占的比例,定义为:
precision=返回结果中相关文档的数目/返回结果的数目
而召回率则是返回结果中相关文档占所有相关文档的比例,定义为:Recall=返回结果中相关文档的数目/所有相关文档的数目。


从数学公式理解:
混淆矩阵
True Positive(真正,TP):将正类预测为正类数
True Negative(真负,TN):将负类预测为负类数
False Positive(假正,FP):将负类预测为正类数误报 (Type I error)
False Negative(假负,FN):将正类预测为负类数→漏报 (Type II error)
准确率(Accuracy):ACC=(TP+TN)/(Tp+TN+FP+FN)
精确率(precision):P=TP/(TP+FP)(分类后的结果中正类的占比)
召回率(recall):recall=TP/(TP+FN)(所有正例被分对的比例)


应用于图像识别:
有一个两类分类问题,分别5个样本,如果这个分类器性能达到完美的话,ranking结果应该是+1,+1,+1,+1,+1,-1,-1,-1,-1,-1.

但是分类器预测的label,和实际的score肯定不会这么完美。按照从大到小来打分,我们可以计算两个指标:precisionrecall。比如分类器认为打分由高到低选择了前四个,实际上这里面只有两个是正样本。此时的recall就是2(你能包住的正样本数)/5(总共的正样本数)=0.4,precision是2(你选对了的)/4(总共选的)=0.5.

图像分类中,这个打分score可以由SVM得到:s=w^Tx+b就是每一个样本的分数。

从上面的例子可以看出,其实precision,recall都是选多少个样本k的函数,很容易想到,如果我总共有1000个样本,那么我就可以像这样计算1000对P-R,并且把他们画出来,这就是PR曲线:

这里有一个趋势,recall越高,precision越低。这是很合理的,因为假如说我把1000个全拿进来,那肯定正样本都包住了,recall=1,但是此时precision就很小了,因为我全部认为他们是正样本。recall=1时的precision的数值,等于正样本所占的比例。


平均精度AP(average precision):就是PR曲线下的面积,这里average,等于是对recall取平均。而mean average precision的mean,是对所有类别取平均(每一个类当做一次二分类任务)。现在的图像分类论文基本都是用mAP作为标准。
AP是把准确率在recall值为Recall = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}时(总共11个rank水平上),求平均值:

AP = 1/11 ∑ recall∈{0,0.1,…,1} Precision(Recall)

均精度均值(mAP):只是把每个类别的AP都算了一遍,再取平均值:

mAP = AVG(AP for each object class)

因此,AP是针对单个类别的,mAP是针对所有类别的。

在图像识别具体应用方法如下:

  1. 对于类别C,首先将算法输出的所有C类别的预测框,按置信度排序;
  2. 选择top k个预测框,计算FP和TP,使得recall 等于1;
  3. 计算Precision;
  4. 重复2步骤,选择不同的k,使得recall分别等于0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0;
  5. 将得到的11个Precision取平均,即得到AP; AP是针对单一类别的,mAP是将所有类别的AP求和,再取平均:
         mAP = 所有类别的AP之和 / 类别的总个数

2.faster-rcnn的MAP代码解析

Faster R-CNN/ R-FCN在github上的python源码用mAP来度量模型的性能。mAP是各类别AP的平均,而各类别AP值是该类别precision(prec)对该类别recall(rec)的积分得到的,即PR曲线下面积,这里主要从代码角度看一下pascal_voc.pyvoc_eval.py里关于AP,rec, prec的实现。
画出PR曲线,只需要在pascal_voc.py添加几行代码即可:
1.文件头部添加库:

import matplotlib.pyplot as plt
import pylab as pl
from sklearn.metrics import precision_recall_curve
from itertools import cycle

2._do_python_eval函数添加

def _do_python_eval(self, output_dir='output'):
    annopath = os.path.join(
      self._devkit_path,
      'VOC' + self._year,
      'Annotations',
      '{:s}.xml')
    imagesetfile = os.path.join(
      self._devkit_path,
      'VOC' + self._year,
      'ImageSets',
      'Main',
      self._image_set + '.txt')
    cachedir = os.path.join(self._devkit_path, 
评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值