全网最全的手机端部署deepseek方法,五种方式手把手教你,从易到难,总有一种适合你

方法一:使用 Termux + Ollama 部署 DeepSeek

步骤 1:安装 Termux

  • 访问 Termux GitHub Releases 页面,下载最新版本的 Termux APK 文件(如 termux-app_v0.118.1+github-debug_arm64-v8a.apk),然后安装到你的安卓设备上。

步骤 2:配置 Termux 环境

  • 打开 Termux,输入 termux-setup-storage 并回车,授予 Termux 访问存储的权限。

  • 更新软件包:输入 pkg update -y && pkg upgrade -y 并回车,等待更新完成。

  • 安装所需工具:输入 pkg install git cmake golang proot-distro -y 并回车,安装必要的依赖包。

步骤 3:安装 Ubuntu 环境

  • 安装 proot-distro 工具:输入 pkg install proot-distro 并回车。

  • 安装 Ubuntu 发行版:输入 proot-distro install ubuntu 并回车。

  • 登录到 Ubuntu 环境:输入 proot-distro login ubuntu 并回车,进入 Ubuntu 的命令行界面。

步骤 4:安装 Ollama

  • 在 Ubuntu 环境中,输入 curl -fsSL https://ollama.com/install.sh | sh 并回车,安装 Ollama。

  • 安装完成后,输入 ollama serve & 并回车,让 Ollama 服务在后台运行。

步骤 5:下载 DeepSeek 模型

  • 在新的 Termux 会话中(返回桌面,长按 Termux 图标,选择 "New session"),输入 proot-distro login ubuntu 并回车,进入 Ubuntu 环境。

  • 输入 ollama pull deepseek-r1:1.5b 并回车,下载 DeepSeek-R1 1.5B 模型。

步骤 6:运行 DeepSeek 模型

  • 输入 ollama run deepseek-r1:1.5b 并回车,运行 DeepSeek-R1 1.5B 模型进行推理聊天。

方法二:使用 Termux + Proot Debian 部署 DeepSeek

步骤 1:安装 Termux

  • 同方法一的步骤 1。

步骤 2:初始化 Termux 环境

  • 同方法一的步骤 2。

步骤 3:安装 Debian 系统(Proot)

  • 安装 Debian:输入 proot-distro install debian 并回车。

  • 进入 Debian 环境:输入 proot-distro login debian 并回车。

  • 更新 Debian 软件源:输入 apt update && apt upgrade -y 并回车。

步骤 4:安装 Ollama

  • 同方法一的步骤 4。

步骤 5:下载 DeepSeek 模型

  • 同方法一的步骤 5。

步骤 6:运行 DeepSeek 模型

  • 同方法一的步骤 6。

方法三:使用 Android Studio 部署 DeepSeek

步骤 1:安装 Android Studio

步骤 2:创建新项目

  • 打开 Android Studio,点击 "Create New Project",选择 "Empty Activity",然后点击 "Next",填写项目名称、包名等信息,选择保存位置,最后点击 "Finish"。

步骤 3:导入 DeepSeek 模型

  • 下载 DeepSeek 模型文件(如 deepseek-r1:1.5b),解压后将模型文件复制到项目的 app/src/main/assets 目录下。

步骤 4:编写代码

  • 在项目的 Java 或 Kotlin 代码中,编写初始化和调用 DeepSeek 模型的代码。例如,在 MainActivity 中:

java复制

import com.deepseek.api.DeepseekModel;
import com.deepseek.api.DeepseekOptions;

public class MainActivity extends AppCompatActivity {
    private DeepseekModel deepseekModel;

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);

        // 初始化 DeepSeek 模型
        DeepseekOptions options = new DeepseekOptions.Builder()
                .setModelPath("deepseek_model") // 模型文件所在路径
                .setConfigPath("assets/config.json") // 配置文件路径
                .build();
        deepseekModel = new DeepseekModel(options);
        deepseekModel.initialize();

        // 测试模型
        String question = "你好,DeepSeek";
        String answer = deepseekModel.generateAnswer(question);
        Log.d("DeepSeek", "Answer: " + answer);
    }
}

步骤 5:运行项目

  • 连接安卓设备,点击 "Run" 按钮运行项目,查看日志输出,验证模型是否正常运行。

方法四:使用 PocketPal 应用部署 DeepSeek

部署步骤

  1. 安装 PocketPal 应用

    • 打开 Google Play 商店,搜索 “PocketPal” 并下载安装。

  2. 下载 DeepSeek 模型

    • 打开 PocketPal 应用,点击左下角的 “Models” 选项。

    • 点击右下角的 “+” 号,选择 “Add from Hugging Face”。

    • 在搜索框中输入 “DeepSeek”,搜索出多个 DeepSeek 模型。

    • 根据设备性能选择模型:

      • 1.5B:适合性能一般的设备,处理简单需求。

      • 7B 或 8B:适合有一定性能的设备,提供较好的体验。

      • 14B 及以上:适合高性能设备,提供更准确的结果。

  3. 加载模型

    • 下载完成后,在 “Models” 页面找到刚刚下载的模型,点击 “Load” 加载模型。

  4. 使用模型

    • 加载完成后,返回应用主界面,即可开始使用 DeepSeek 模型进行对话

方法五:使用 PocketPal 应用部署 DeepSeek

  1. 安装 MNN Chat 应用

    • 打开 MNN 官网,下载适用于安卓的 MNN Chat 应用 APK 文件。

    • 安装下载的 APK 文件。

  2. 下载 DeepSeek 模型

    • 打开 MNN Chat 应用,进入应用后,可以看到应用支持的模型列表。

    • 找到并选择 DeepSeek 模型,例如 DeepSeek-R1-7B-Qwen-MNN

    • 点击下载模型文件,等待下载完成。

  3. 使用模型

    • 模型下载完成后,返回应用主界面。

    • 输入提示词或问题,例如:“同样是一年,为什么阳历固定 12 个月,而阴历却有闰月?”。

    • DeepSeek R1 模型将开始推理并返回结果

  • 更多问题更多资料请咨询,全天24小时秒回,任何问题,需要任何AI大模型的学习资料,五年大模型算法工程师在线答疑:

### 移动设备上本地安装和配置 DeepSeek #### 设备兼容性和准备条件 对于希望在移动设备上实现 DeepSeek 的本地部署,需先确认设备硬件是否满足最低需求。通常情况下,智能手机的计算资源有限,尤其是 GPU 和内存方面可能不如桌面级计算机充沛。因此,在尝试之前应评估目标设备的具体规格,包括但不限于处理器型号、RAM 容量以及存储空间等[^1]。 #### 工具与环境搭建 鉴于大多数移动端操作系统(如 Android 或 iOS)并不直接支持大型机器学习框架所需的全部依赖项,建议采用容器化解决方案来简化设置流程。Docker 是一种流行的选择,它允许创建隔离的应用程序执行环境,从而减少跨平台差异带来的麻烦。不过需要注意的是,并不是所有的手机都官方支持 Docker 应用;此时可以考虑其他轻量化方案比如 Termux 配合特定编译版本的 Python 解释器及其库文件来进行开发测试工作[^2]。 #### 下载并运行 DeepSeek 模型 一旦完成了上述准备工作,则可按照官方文档指示获取预训练好的 DeepSeek 模型权重及其他必要组件。由于网络状况和个人偏好不同,这里推荐通过命令行工具 wget 或 curl 来完成下载任务。之后利用所选编程语言编写简单的加载脚本即可启动服务端口监听等待客户端请求接入[^3]。 ```bash wget https://example.com/path/to/deepseek_model.tar.gz tar -xzvf deepseek_model.tar.gz ``` #### 连接至已部署的服务实例 最后一步就是确保能够顺利访问到刚刚建立起来的大规模语言模型接口了。如果是在同一台物理机内部署的话,那么只需打开浏览器输入 `http://localhost:<port>` 即可进入交互界面;而当涉及到远程调用场景时,则务必保证防火墙规则正确开放对应端口号并且 DNS 解析正常运作以便外部 IP 地址成功映射回宿主机位置。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值