现在,大家用手机的时间越来越长,对隐私安全的关注也越来越高。各大厂商也在琢磨,怎么才能让大模型直接跑在手机上。这几天写文章时,发现不少小伙伴都在问:怎么在手机上部署 DeepSeek?
既然大家都感兴趣,那今天就把我之前折腾的部署步骤整理出来,分享给大家,希望能帮到你!
在 Android 手机上运行 LLM安装指南
1. 安装 Termux 应用
安装有两种方法,如果第一种能用,别浪费时间试第二种。
- 打开Termux GitHub Releases页面
- 下载
termux-app_v0.119.0-beta.1+apt-android-7-github-debug_arm64-v8a.apk
。 - 安装 APK 文件。
2. 运行 Ollama 服务器前的环境配置
打开 Termux 后,你会看到一个看起来像 Linux 终端的界面。接下来,我们需要配置 Ollama 运行环境。
- 先授予存储权限:
termux-setup-storage
运行后,让 Termux 能够访问你的 Android 存储系统。执行后,系统会弹出“设置”应用,找到 Termux 并手动授予存储权限。
- 更新软件包
在安装任何工具之前,先更新软件包,就像在 Linux 上做的那样:
pkg upgrade
执行后,如果提示Y/N
,直接输入Y
并回车。
- 安装 Git、CMake 和 Golang
这些工具是下载和构建 Ollama 所必要依赖:
pkg install git cmake golang
3. 安装并构建 Ollama
- clone Ollama GitHub 仓库
如果你经常使用 Termux,可以先进入你想安装 Ollama 的目录;否则,直接执行以下命令:
git clone --depth 1 https://github.com/ollama/ollama.git
- 进入 Ollama 目录
下载完成后,切换到 Ollama 目录:
cd ollama
- 生成 Go 代码并构建 Ollama
运行以下命令,先生成 Go 代码:
go generate ./..
然后编译 Ollama(这一步耗时比较久,需要一点耐心):
go build .
等待构建完成后,我们成功在手机上安装 Ollama!
4. 运行 DeepSeek 模型或其他小型模型(1B 或 2B 参数)
选择一个合适的模型
注意:参数超过 3B(30 亿)的模型在手机上运行太慢,甚至可能无法加载进显存,所以别折腾太大的模型。
进入Ollama模型库,寻找适合手机的小型语言模型(SLM,Small Language Models)。一旦找到合适的模型,就可以开始跑 本地模型 了!
在 Ollama 模型库 页面,你会看到一个“复制”按钮(如果用手机访问,看不到的话,切换到“桌面视图”模式)。点击复制,等会儿我们部署时可以用的上。
- 下载并运行模型
这里以DeepSeek 1.5B模型为例,当然你可以选择其他模型,步骤都是一样的。
- 运行 DeepSeek 1.5B 模型:
./ollama run deepseek-r1:1.5b --verbose
运行你自己选择的模型(如果你是选择其他模型时请输入对应的命令):
./<刚刚从 Ollama 官网复制的命令>
等待下载完成
这个命令会开始下载模型到你的手机上,请耐心等待。下载时间取决于你的网速,如果你用的是移动数据,确保至少还有 1.5GB 流量,否则容易翻车!
开始使用 LLM
下载完成后,Termux 终端里会出现交互界面,你可以像在 PC 上那样使用 LLM。不过别对性能抱太高期待,毕竟这是在手机上运行的“小型”模型,速度肯定比不上 ChatGPT。
DeepSeek无疑是2025开年AI圈的一匹黑马,在一众AI大模型中,DeepSeek以低价高性能的优势脱颖而出。DeepSeek的上线实现了AI界的又一大突破,各大科技巨头都火速出手,争先抢占DeepSeek大模型的流量风口。
DeepSeek的爆火,远不止于此。它是一场属于每个人的科技革命,一次打破界限的机会,一次让普通人也能逆袭契机。
DeepSeek的优点
掌握DeepSeek对于转行大模型领域的人来说是一个很大的优势,目前懂得大模型技术方面的人才很稀缺,而DeepSeek就是一个突破口。现在越来越多的人才都想往大模型方向转行,对于想要转行创业,提升自我的人来说是一个不可多得的机会。
那么应该如何学习大模型
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?
”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人」
,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【
保证100%免费
】
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】