caffe
文章平均质量分 75
fffupeng
只要你努力微笑,命运也会惧怕你的獠牙。
展开
-
windows下安装caffe
实验环境win8.1 64 + vs2013+matlab2013b实验装备:i7 6700 + gtx960step1:首先更新显卡驱动,在gforce experience或者其他软件上。step2.安装vs2013,最好包含up5,由于我没有更新up5,boost编程出现了优化器崩溃,当然window下的caffe是不需要自己手动安装boost的step3.安装matla原创 2016-09-21 14:40:21 · 348 阅读 · 0 评论 -
fcn语义分割 论文
全卷积网络: 个人认为本文主要是两个重点: 第一是fcn,全卷积网络(+上采样) 第二是skip net 首先说全卷积网络: 通常cnn在卷积层后会接上若干全连接层,但是全连接层和卷积层的连接数量是固定的,这也就导致了输入必须是固定的尺寸。如下图所示: 但是在fcn中将fc用卷积取代,再加上采样层,这样能够输入任何大小的图片,同时输出图片相应大小的语义分割。如下图所示:原创 2017-06-04 11:33:45 · 1107 阅读 · 0 评论 -
r-fcn论文
这是一篇基于全卷积网络的目标识别,baseline是用resnet。当然不是使用resnet+faster rcnn那么简单。 问题来源: translation invariance 和translation variance 卷积网络最初兴起于分类任务,当然效果是越来越好,而一般的目标识别的网络也是通过分类的网络提取特征(zf,vgg,res等等),再加上一系列的操作(roi,bound原创 2017-06-07 13:00:19 · 479 阅读 · 0 评论 -
SSD 安装日志
s1: git clone cd caffe git checkout ssd s2: cp Makefile.config.example Makefile.config make -j8 make py make test -j12 make runtest –j12 出现问题: 缺少-lopenblas sudo apt-get install open原创 2017-06-17 14:27:09 · 620 阅读 · 0 评论 -
caffe 添加Python层
本文在mnist中添加Python层,作为修改,在本文中不仅介绍如何添加层,还会涉及到修改层的一些思路。首先在train_test_lenet.prototxt中添加MyPythonLayer一层,如下图所示:该层的主要作用就是将输入加上10,并输出,同事输入输出的维度不变。接下来就是具体的代码实现。在caffe/python 下面添加mypythonLayer.py原创 2017-06-28 12:29:08 · 6436 阅读 · 4 评论 -
使用训练好的caffe模型识别图片
import osimport sysimport numpy as npimport matplotlib.pyplot as pltcaffe_root='/opt/digits-2.0/caffe/'sys.path.insert(0,caffe_root+'python')import caffeMODEL_FILE='/opt/digits-2.0/caffe/exampl原创 2016-12-07 22:02:03 · 3182 阅读 · 0 评论 -
python数据集标签小脚本,修改目标图片坐标格式,更改标签
在之前已经掌握了字符串的操作以及序列常用的操作,这样已经可以完成文件系统下的操作了。简单来讲就是:txt的读取写入,路径的读取以及访问,路径和txt文件内容的调整操作。这些操作基本涵盖了数据集标签建立过程中需要的操作,下面就是一个数据集标签的脚本例子。实现的功能:将x y height width这样格式的txt转为label x_r y_r height_r width_原创 2016-10-15 22:23:45 · 1670 阅读 · 0 评论 -
python小脚本 删除含有特定字符的txt,并重命名
#-*- coding: UTF-8 -*-import os#删除txt中含有0的项目,并且删除与之对应的imagedef delete_no_car_picture(): for txtname in labeltxt: #print txtname f = open(labelpath+"/"+txtname) res = f.原创 2016-10-18 21:15:35 · 2250 阅读 · 0 评论 -
window caffe生成文件列表程序
c++ 读取文件夹下所有的图片文件,并将图片的名称保存到txt中// test_file.cpp : 定义控制台应用程序的入口点。//#include "stdafx.h"#include#include#include#include#include#includeusing namespace std;void getFiles(string path, vect原创 2016-10-03 16:41:18 · 383 阅读 · 0 评论 -
caffe训练识别自己的图片
1.搞定数据集本次caffe训练的图片全部来自网上下载。分为两类,其中100个大象的图像,还有一百个恐龙的图像。如下图:随机选取20个大象的图片和20个恐龙的图片分别放置在image_train和image_train文件夹下。最好将两类不同的图片分开放置于不同的文件夹下,方便生成标签。2.生成图像列表在cmd中输入make_imagelist,原创 2016-10-04 15:38:41 · 3271 阅读 · 0 评论 -
window下caffe图像数据转换
将不一样大小的jpg,jpeg,png,tif等格式转成db。使用c++文件convert_imagest.cpp该文件使用格式convert_imageset [flags] ROOTFOLDER/ LISTFILE DB_NAME命令FLAGS:图片参数组ROOTFOLDER/ 图片存放的绝对路径,从linux根目录开始LISTFILE:图片文件列表清单,一般为一个tx原创 2016-10-03 11:07:00 · 1170 阅读 · 0 评论 -
caffe mnist数据层
模型---->层(data,convolution,pooling) blobs方式流动---->param数据层:数据层是每个模型的底层,是模型的入口,不仅仅提供数据的输入,也提供数据从blobs转换成别的格式进行保存输出。通常的数据预处理(减去均值,放大缩小,剪裁和镜像等),也在这一层设置参数实现。数据源可以是leveldb,mldb,也是内存中的,也可以是磁盘中hdf5文件和图片原创 2016-09-30 10:24:40 · 531 阅读 · 0 评论 -
caffe mnist测试
之前已经在window上安装完caffe,现在用mnist测试:第一步在examples/mnist文件夹下面修改lenet_solver.prototxt,因为我没有使用gpu所以直接在最后改为CPUlenet_solver.prototxt# The train/test net protocol buffer definitionnet: "examples/mnist原创 2016-09-30 09:46:27 · 422 阅读 · 0 评论 -
faster rcnn 训练pascal_voc数据集
硬件需求和软件的安装和fast rcnn类似,直接开始训练voc2007。1 下载数据集,并解压cd py_faster_rcnn/datawget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tarwget http://host.robots.ox.ac.uk/pascal/V原创 2017-02-16 09:00:22 · 4127 阅读 · 0 评论