darknet.c
首先就是各种头文件
/
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include "parser.h"
#include "utils.h"
#include "cuda.h"
#include "blas.h"
#include "connected_layer.h"
#ifdef OPENCV
#include "opencv2/highgui/highgui_c.h"
#endif
/
各种接口函数的声明,方便下面调用
void change_rate(char *filename, float scale, float add)
void average(int argc, char *argv[])
void speed(char *cfgfile, int tics)
void operations(char *cfgfile)
。。。。。
/
最主要的main函数
int main(int argc, char **argv)
{
if(argc < 2){
fprintf(stderr, "usage: %s <function>\n", argv[0]);
return 0;
}//参数小于2直接输出提示
gpu_index = find_int_arg(argc, argv, "-i", 0);
if(find_arg(argc, argv, "-nogpu")) {
gpu_index = -1;
}//设置无gpu格式
#ifndef GPU
gpu_index = -1;
#else
if(gpu_index >= 0){
cuda_set_device(gpu_index);
}
#endif
//输入选项
if (0 == strcmp(argv[1], "average")){
average(argc, argv);
} else if (0 == strcmp(argv[1], "yolo")){
run_yolo(argc, argv);//从这里跳转出去,执行yolo----------------
} else if (0 == strcmp(argv[1], "voxel")){
run_voxel(argc, argv);
} else if (0 == strcmp(argv[1], "super")){
run_super(argc, argv);
} else if (0 == strcmp(argv[1], "detector")){
run_detector(argc, argv);
} else if (0 == strcmp(argv[1], "cifar")){
yolo测试代码梳理
最新推荐文章于 2024-08-30 13:28:37 发布
本文主要解析了Yolo测试代码的实现,包括`darknet.c`中的主要接口函数和`run_yolo`函数,用于训练、验证、测试Yolo模型,并展示了如何进行图像预测和边界框绘制。
摘要由CSDN通过智能技术生成