混淆矩阵
混淆矩阵基本上就是上表的表示,展示出实际的类别和分类后的得到的结果。(在目标识别中如何表现出背景那一类?)
抽象出来就是下面的列表:
从TP,TN、FN、FP 可以得到几种指标:
1)查准率:
也可以理解为(正样本的)准确率,P = TP/(TP+FP)。在目标识别中就是:检测到正确的目标数目/检测到的目标数目;
上述的查准率公式也有不妥的地方,对于只有一种类别的数据还是不多的,对于两种以上的数据,计算准确率的过程中需要中和考虑所有类别。例如二分类:
ACC = (TP + TN)/ (TP + FP + TN + FN)
对于多分类:
ACC = (TP_c0 + TP_c1 + TP_c2 ...)/