混淆矩阵、分类评价指标

本文详细介绍了混淆矩阵的概念,包括查准率、查全率、F-Score、ROC曲线和AUC等分类评价指标。查准率关注正确识别的比例,查全率强调不漏检,F1-Score综合考虑两者,ROC曲线则用于评估模型好坏,不受阈值影响,而AUC是ROC曲线下的面积,反映模型性能。
摘要由CSDN通过智能技术生成

混淆矩阵

 

混淆矩阵基本上就是上表的表示,展示出实际的类别和分类后的得到的结果。(在目标识别中如何表现出背景那一类?)

抽象出来就是下面的列表:

从TP,TN、FN、FP 可以得到几种指标:

 

1)查准率:

也可以理解为(正样本的)准确率,P = TP/(TP+FP)。在目标识别中就是:检测到正确的目标数目/检测到的目标数目;

上述的查准率公式也有不妥的地方,对于只有一种类别的数据还是不多的,对于两种以上的数据,计算准确率的过程中需要中和考虑所有类别。例如二分类:

ACC = (TP + TN)/ (TP + FP + TN + FN)

对于多分类:

ACC = (TP_c0 + TP_c1 + TP_c2 ...)/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值