//第一种方法:Dijkstra算法
#include <iostream>
#define MAXN 510
#define MAXDATA 1000000000
using namespace std;
int G[MAXN][MAXN];int weight[MAXN];
int N,M,C1,C2;
int collected[MAXN];
int dist[MAXN];int w[MAXN];int num[MAXN];
void Dijkstra(){
fill(dist,dist+N,MAXDATA);
dist[C1]=0;
w[C1]=weight[C1];
num[C1]=1;
for(int k=0;k<N;k++){
int minId=-1,minValue=MAXDATA;
for(int i=0;i<N;i++){
if(!collected[i] && dist[i]<minValue){
minValue=dist[i];
minId=i;
}
}
if(minId==-1) break;
collected[minId]=1;
for(int j=0;j<N;j++){
if(G[minId][j]!=MAXDATA && !collected[j]){//未被收录的邻接点
if(dist[j]>dist[minId]+G[minId][j]){//若需要更新dist
dist[j]=dist[minId]+G[minId][j];
//1:点权和边权差不多,只是可能两者不能同时取得
w[j]=w[minId]+weight[j];//1.1:当更新dist时,点权肯定变了,随之更新
//2.1:当更新dist时,num肯定变了,此时minId到j的路径只有一条,j对于num没有贡献,只能继承minId的num
num[j]=num[minId];
}else if(dist[j]==dist[minId]+G[minId][j]){
//2.2当dist不用更新,但是多了从minId通往j的路径方式,因此叠加num[minId]
num[j]+=num[minId];
if(w[j]<w[minId]+weight[j]){
w[j]=w[minId]+weight[j];//1.2:当dist不用更新,但是点权可以更新时,更新点权
}
}
}
}
}
}
int main(){
scanf("%d %d %d %d",&N,&M,&C1,&C2);
for(int i=0;i<N;i++){
scanf("%d",&weight[i]);
}
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
G[i][j]=MAXDATA;
}
}
int tmp1,tmp2,tmpl;
for(int i=0;i<M;i++){
scanf("%d %d %d",&tmp1,&tmp2,&tmpl);
G[tmp1][tmp2]=tmpl;
G[tmp2][tmp1]=tmpl;
}
Dijkstra();
printf("%d %d",num[C2],w[C2]);
return 0;
}
//第二种方法:Bellman_ford算法
//本题不需要判断负值环
#include <iostream>
#include <vector>
#include <set>
#define MAXN 510
#define MAXDATA 1000000000
using namespace std;
struct Node
{
int v;//邻接顶点
int dis;//邻接边权
Node(int _v,int _dis):v(_v),dis(_dis){}
};
vector<Node> Adj[MAXN];//邻接表
int weight[MAXN];//点权
int N,M,C1,C2;
//1:无负值边时Dijkstra:dist[]中存放的时源点只经过已被收录过的点的最短距离,
//当前收录点只会影响其邻接点的距离
//未收录的距离不会影响已收录的
//2:有负值边时Bellman_ford:
//不是邻接点,中间跨几个点也可能影响,因此,每次遍历从当前点出发的所有边,
//又因为后更新的距离也会影响前面的距离,最多需要N-1次操作
int d[MAXN];int w[MAXN];
int num[MAXN];
set<int> pre[MAXN];//防止前驱重复
bool Bellman_ford(){
//1:Initialize
fill(d,d+N,MAXDATA);
d[C1]=0;
w[C1]=weight[C1];
num[C1]=1;
//2:main part
for(int i=0;i<N-1;i++){//N-1轮操作
for(int u=0;u<N;u++){//每次操作都遍历所有边
for(int j=0;j<Adj[u].size();j++){//u的所有邻接边
int v=Adj[u][j].v;
int dis=Adj[u][j].dis;
if(d[u]+dis<d[v]){
d[v]=d[u]+dis;
w[v]=w[u]+weight[v];
pre[v].clear();//原有前驱不够优,将原有前驱全部清空
pre[v].insert(u);//插入新前驱
num[v]=num[u];//继承新前驱的num
}else if(d[u]+dis==d[v]){
if(w[u]+weight[v]>w[v]){
w[v]=w[u]+weight[v];
}
pre[v].insert(u);//多了一个前驱,将新前驱插入
num[v]=0;
//不确定u之前有没有在pre[v]里面,防止路径重复统计,只能重新计算所有前驱
set<int>::iterator it;
for(it=pre[v].begin();it!=pre[v].end();it++){
num[v]+=num[*it];
//统计每个前驱点的num相加,因为前驱点不同,路径一定不同了
}
}
}
}
}
}
int main(){
scanf("%d %d %d %d",&N,&M,&C1,&C2);
for(int i=0;i<N;i++){
scanf("%d",&weight[i]);
}
int tmp1,tmp2,tmpl;
for(int i=0;i<M;i++){
scanf("%d %d %d",&tmp1,&tmp2,&tmpl);
Node n1(tmp2,tmpl);
Node n2(tmp1,tmpl);
Adj[tmp1].push_back(n1);
Adj[tmp2].push_back(n2);
}
Bellman_ford();
printf("%d %d",num[C2],w[C2]);
return 0;
}
//第三种方法:SPFA算法
//本题不需要判断负值环
#include <iostream>
#include <vector>
#include <queue>
#include <set>
#define MAXN 510
#define MAXDATA 1000000000
using namespace std;
struct Node
{
int v;//邻接点
int dis;//邻接边权
Node(int _v,int _dis):v(_v),dis(_dis){}
};
vector<Node> Adj[MAXN];//邻接表
int nv,ne,C1,C2;
int team[MAXN];//点权
int d[MAXN],w[MAXN];
int num[MAXN];
int inq[MAXN];//在不在队列中
set<int> pre[MAXN];
void SPFA(){
fill(d,d+nv,MAXDATA);
d[C1]=0;
w[C1]=team[C1];
num[C1]=1;
queue<int> q;
q.push(C1);
inq[C1]=1;
while(!q.empty()){
int cur=q.front();
q.pop();
inq[cur]=0;
for(int u=0;u<Adj[cur].size();u++){
int v=Adj[cur][u].v;
int dis=Adj[cur][u].dis;
if(d[v]>d[cur]+dis){
d[v]=d[cur]+dis;
w[v]=w[cur]+team[v];
pre[v].clear();
pre[v].insert(cur);
num[v]=num[cur];
if(!inq[v]){
q.push(v);
inq[v]=1;
}
}else if(d[v]==d[cur]+dis){
if(w[cur]+team[v]>w[v]){
w[v]=w[cur]+team[v];
}
pre[v].insert(cur);
num[v]=0;
set<int>::iterator it;
for(it=pre[v].begin();it!=pre[v].end();it++){
num[v]+=num[*it];
}
if(!inq[v]){
q.push(v);
inq[v]=1;
}
}
}
}
}
int main(){
scanf("%d %d %d %d",&nv,&ne,&C1,&C2);
for(int i=0;i<nv;i++){
scanf("%d",&team[i]);
}
int tmp1,tmp2,tmpl;
for(int i=0;i<ne;i++){
scanf("%d %d %d",&tmp1,&tmp2,&tmpl);
Node tmpn1(tmp2,tmpl);
Node tmpn2(tmp1,tmpl);
Adj[tmp1].push_back(tmpn1);
Adj[tmp2].push_back(tmpn2);
}
SPFA();
printf("%d %d",d[C2],w[C2]);
return 0;
}