2018最新精选的Go框架,库和软件的精选列表 二

2018最新精选的Go框架,库和软件的精选列表 二

地理

地理工具和服务器

  • geocache - 适用于基于地理定位的应用程序的内存缓存。
  • pbf - OpenStreetMap PBF golang编码器/解码器。
  • S2几何 - Go中的S2几何库。
  • Tile38 - 具有空间索引和实时地理围栏的地理位置数据库。

去编译器

编译工具转到其他语言。

  • gopherjs - 转到JavaScript的编译器。
  • llgo - Go的基于LLVM的编译器。
  • tardisgo - Golang to Haxe转CPP / CSharp / Java / JavaScript转发器。

够程

管理和使用Goroutines的工具。

  • cyclicbarrier - 用于golang的CyclicBarrier。
  • go-floc - 轻松协调goroutines。
  • go-flow - 控制goroutines执行顺序。
  • GoSlaves - 简单和异步Goroutine池库。
  • goworker - goworker是一名Go-based后台工作者。
  • grpool - 轻量级Goroutine游泳池。
  • parallel-fn - 并行运行函数。
  • 游泳池 - 有限的消费者goroutine或无限的goroutine游泳池,更容易goroutine处理和取消。
  • 信号量 - 基于通道和上下文的锁定/解锁操作超时的信号量模式实现。
  • 信号量 - 基于CAS的快速可调整大小的信号量实现(比基于通道的信号量实现更快)。
  • 金枪鱼 -够程池golang。
  • worker-pool - goworker是一个Go简单的异步工作池。
  • workerpool - 限制任务执行并发性的Goroutine池,而不是排队的任务数。

GUI

用于构建GUI应用程序的库。

工具包

  • app - 使用GO,HTML和CSS创建应用程序的包。支持:MacOS,Windows正在进行中。
  • go-astilectron - 使用GO和HTML / JS / CSS构建跨平台GUI应用程序(由Electron提供支持)。
  • go-gtk - 为GTK绑定绑定。
  • go-qml - 对Go语言的QML支持。
  • go-sciter - Sciter的绑定:用于现代桌面UI开发的Embeddable HTML / CSS /脚本引擎。跨平台。
  • goqt - Golang绑定到Qt跨平台应用程序框架。
  • gotk3 - Go绑定GTK3。
  • gowd - 使用GO,HTML,CSS和NW.js进行快速简单的桌面UI开发。跨平台。
  • qt - Go的Qt绑定(支持Windows / macOS / Linux / Android / iOS / Sailfish OS / Raspberry Pi)。
  • ui - Go的平台原生GUI库。跨平台。
  • walk - 适用于Go的Windows应用程序库工具包。
  • webview - 具有简单双向JavaScript绑定的跨平台webview窗口(Windows / macOS / Linux)。

相互作用

  • gosx-notifier - Go的OSX桌面通知库。
  • robotgo - Go Native跨平台GUI系统自动化。控制鼠标,键盘等。
  • systray - 跨平台Go库在通知区域中放置图标和菜单。
  • trayhost - 跨平台Go库,在主机操作系统的任务栏中放置一个图标。

硬件

用于与硬件交互的库,工具和教程。

有关完整列表,请参阅go-hardware

图片

用于处理图像的库。

  • bild - 纯Go中图像处理算法的集合。
  • bimg - 使用libvips进行快速高效图像处理的小包。
  • geopattern - 从字符串创建美丽的生成图像模式。
  • gg - 纯Go中的2D渲染。
  • gift - 图像处理过滤器包。
  • go-cairo - 转到cairo图形库的绑定。
  • go-gd - 对GD库进行绑定。
  • go-nude - 使用Go进行裸体检测。
  • go-opencv - 转到OpenCV的绑定。
  • go-webcolors - 从Python到Go的webcolors库的端口。
  • gocv - 使用OpenCV 3.3+获取计算机视觉包。
  • govatar - 用于生成有趣头像的库和CMD工具。
  • 想象力 - 绑定到ImageMagick的MagickWand C API。
  • imaginary - 用于图像大小调整的快速简单的HTTP微服务。
  • 成像 - 简单Go图像处理包。
  • img - 选择图像处理工具。
  • ln - Go中的3D线条艺术渲染。
  • mpo - MPO 3D照片的解码器和转换工具。
  • picfit - 用Go编写的图像大小调整服务器。
  • pt - 用Go编写的路径跟踪引擎。
  • 调整大小 - 使用常见插值方法调整Go的图像大小。
  • rez - 纯Go和SIMD中的图像大小调整。
  • smartcrop - 为任意图像和裁剪尺寸找到好作物。
  • svgo - 用于SVG生成的Go语言库。
  • tga - 包tga是TARGA图像格式解码器/编码器。

物联网(物联网)

用于物联网编程设备的库。

  • connectordb - 量化自我和物联网的开源平台。
  • 设备 - 物联网设备库套件,x / exp / io实验。
  • eywa - Project Eywa本质上是一个连接管理器,可以跟踪连接的设备。
  • flogo - Project Flogo是物联网边缘应用和集成的开源框架。
  • GATT -盖特是一个围棋包构建低功耗蓝牙外设。
  • gobot - Gobot是机器人,物理计算和物联网的框架。
  • mainflux - 工业物联网消息和设备管理服务器。
  • periph - 用于与低级电路板设备连接的外围设备I / O.
  • sensorbee - 物联网的轻量级流处理引擎。

记录

用于生成和使用日志文件的库。

  • distillog - 蒸馏水平测井(将其视为stdlib + log水平)。
  • glg - glg是Go的简单快速级别的日志库。
  • glog - Go的执行日志。
  • go-cronowriter - 简单的编写器,可根据当前日期和时间自动轮换日志文件,如cronolog。
  • go-log - Log lib支持级别和多个处理程序。
  • go-log - Go中的Log4j实现。
  • go-logger - Go程序的简单记录器,带有级别处理程序。
  • gologger - 简单易用的log lib for go,登录Colored Console,Simple Console,File或Elasticsearch。
  • gomol - 具有可扩展日志记录输出的Go的多输出结构化日志记录。
  • gone / log - 快速,可扩展,功能齐全,std-lib源兼容的日志库。
  • journald - 执行systemd Journal的日志API以进行日志记录。
  • log - Go的结构化日志包。
  • log - Go的简单,可配置和可扩展的结构化日志记录。
  • log - Go的结构化日志界面干净地将日志记录外观与其实现分开。
  • log-voyage - 用golang编写的全功能日志saas。
  • 5
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
很高兴为您提供帮助!以下是使用Go语言实现识别图片文字的方法: 1. 安装Tesseract OCR Tesseract是一个开源的OCR,可以用于识别图片中的文字。在Go语言中,可以使用tesseract-ocr来调用Tesseract OCR。首先需要安装Tesseract OCR,可通过以下命令在Ubuntu系统中进行安装: ``` sudo apt-get install tesseract-ocr ``` 2. 安装并使用tesseract-ocr 安装完成Tesseract OCR后,就可以使用Go语言的tesseract-ocr来实现图片文字识别功能。可以通过以下命令来安装tesseract-ocr: ``` go get github.com/otiai10/gosseract ``` 在Go程序中引入tesseract-ocr并调用其API,即可实现图片文字识别功能。以下是一个简单的示例代码: ```go package main import ( "fmt" "github.com/otiai10/gosseract" ) func main() { client := gosseract.NewClient() defer client.Close() client.SetImage("test.png") text, _ := client.Text() fmt.Println(text) } ``` 在上述代码中,首先通过`gosseract.NewClient()`创建了一个tesseract-ocr的客户端实例,然后通过`client.SetImage()`方法设置要识别的图片文件路径,最后调用`client.Text()`方法完成图片文字识别,并将识别结果输出到控制台中。 3. 针对不同的图片进行优化 在实际应用中,不同的图片可能需要不同的优化方式来提高识别准确率。例如,对于一些模糊的图片,可以通过模糊处理或降噪处理来提高识别准确率;对于一些光线不足的图片,可以通过增强对比度或调整亮度等方式来提高识别准确率。因此,在实际应用中,需要根据具体情况对图片进行预处理和优化,以提高识别准确率。 希望这些信息对您有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值