U-Net: Convolutional Networks for Biomedical Image Segmentation 解析

U-Net网络结构包含收缩和扩张路径,擅长利用少量数据进行端到端训练,尤其适用于生物医学图像分割。其特点在于下采样后特征通道翻倍,上采样时连接收缩路径特征图,通过大量卷积层和ReLU层实现精确定位。训练使用SGD优化器,以大批次输入最大化GPU利用率,同时应用图像增强和权重新计算来平衡类别频率。
摘要由CSDN通过智能技术生成

    网络结构包括一个捕获上下文信息的收缩路径和一个用于精确定位的对称扩张路径,该网络能使用很少的图像就能够进行端到端的训练,并且在ISBI对电子显微镜下神经元结构进行的分割挑战方面胜过先前的最佳方法(滑动窗口卷积网络)。

结构 
卷积层: 无填充卷积+relu+(2*2,stride=2)的max pooling 
卷积滤波器的数量每次下采样后double。 
patch: 上采样的时候是下采样时候的两倍。因为要把下采样的patch合并过来。

优化器:SGD, 0.99的动量系数 
loss: cross entropy loss function 
输入:尽可能大的batch来完美使用GPU内存。 
权重初始化:高斯(0,sigma=sqrt(2/N)) 
图像增强采用仿射变换。

 U-Net  网络架构:

左侧:收缩路径遵循典型卷积神经网络的的结构, 重复使用的两个3*3卷积(无填充卷积),每一组卷积后紧跟着一个ReLU和一个 步长为2 的2*2  的最大池化操作进行下采样,每次下采样后将特征通道的数目变为原来两倍。

右侧:扩张路径中每一步都包含对特征映射进行上采样紧跟着一个2*2的卷积,将特征通道数减半,与来自收缩路径的对应的裁剪特征图进行连接,以及两个3*3 卷积,每个卷积后都

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值