百度小程序单卡配置说明

智能小程序单卡介绍

智能小程序单卡是一种搜索特型卡片,具有品牌曝光强势、服务交互便捷等优点,能够帮助开发者获取更多用户关注和转化。

在品牌曝光上,用户搜索小程序名称时,会有三大特型样式展现,尤其是高级卡,占据手机一半屏幕,能快速打动搜索用户心智。

在服务交互上,开发者可自行配置单卡子链,用户一搜即达,能够快速找到、使用、分享相关服务能力。

智能小程序单卡样式

智能小程序单卡获取方式

小程序单卡初级卡中级卡高级卡
获取方式小程序上线后 24 小时小程序上线后 24 小时小程序达到 A 级
生效条件无需配置至少 2 条子链审核通过至少 2 条子链审核通过
子链配置上限01515
子链可展现上限036
子链可展现数量02、32、4、6

智能小程序单卡子链配置方式

操作路径:“百度智能小程序开发者平台 -> 搜索接入 -> 小程序单卡 -> 添加子链”,按提示添加子链信息与 path ,审核通过后即可线上展示给用户。

seo方法

智能小程序单卡子链配置注意事项

  • 子链必须为小程序的核心功能页或子频道页,在首页有固定入口,不能为首页、单一商品页、单一内容页。

  • 子链标题不超过 10 个字符(即 5 个汉字),子链描述不超过 16 个字符(即 8 个汉字),标题与描述不得重复,子链文案需符合广告法。

  • path 路径即页面路径,与配置 app.json 文件的 pages 字段涵义相同,例如 /pages/ask/index 。

  • 至多可提交 15 条子链,至少有 2 条子链审核通过后,线上才会展现子链。

  • 审核通过后,排序靠前的子链将优先展现。子链出现异常或用户对其他子链有强需求时,会自动展现其他子链。开发者可自行调整子链排序。

  • 子链 path 落地页需功能完善,用户体验优质。

<think>嗯,用户问的是在单机单卡的服务器上如何配置MASTER_ADDR和MASTER_PORT,用于分布式训练或者进程间通信。首先,我需要确认MASTER_ADDR和MASTER_PORT的作用。根据引用[1],MASTER_ADDR是运行rank 0进程的机器地址,而MASTER_PORT是该机器上的一个空闲端口,用于协调通信。不过,用户的情况是单机单卡,可能需要多进程的设置,比如用DDP? 然后,根据引用[4],DP模式是单机多卡的情况,用DataParallel包装模型。而引用[5]提到DDP是多进程的,每个GPU对应一个进程,适用于单机或多机。但用户只有单卡,这时候是否需要多进程呢?可能用户是想在单卡上模拟多进程环境,或者为以后扩展做准备? 接着,用户提到的单机单卡配置,可能是在测试分布式代码,或者在准备未来迁移到多卡环境。根据引用[3],多卡训练涉及多进程和进程间通信,所以需要配置这些参数。但在单卡情况下,是否需要设置?比如,当使用DDP时,即使单卡,也需要启动多个进程吗?或者是否可以通过环境变量设置,即使单卡? 可能的情况是,用户正在尝试运行分布式训练的代码,比如PyTorch的DDP,但暂时只有单卡服务器。这时候需要正确设置环境变量,即使单卡。例如,在PyTorch中,即使单机单卡,使用DDP也需要指定rank和world_size,同时设置MASTER_ADDR和MASTER_PORT。这时候,MASTER_ADDR应该是localhost,端口选择一个空闲的端口号。 然后,需要告诉用户如何具体操作。比如,在运行脚本时设置环境变量,或者在代码中指定。根据引用[1],MASTER_ADDR是运行rank 0的机器,这里就是本机,所以设置为127.0.0.1或者localhost。MASTER_PORT随便选一个没被占用的端口,比如29500。 可能还需要解释为什么单机单卡需要这些配置,因为DDP要求这些参数的存在,即使只有一个进程。或者用户可能误解了配置的需求,实际上单卡可能不需要这些,但如果用DDP的话,即使单卡也需要启动一个进程,此时需要这些设置。 另外,用户可能混淆了DP和DDP的区别。DP是单进程多线程,而DDP是多进程,每个进程可能对应一个GPU。但单卡的话,可能DDP需要启动多个进程吗?或者单卡单进程的情况下是否需要这些参数? 根据PyTorch官方文档,DDP在单机单卡的情况下,也可以使用,但通常需要启动多个进程。不过,如果只有一个GPU,可能只能启动一个进程,这时候是否需要设置MASTER_ADDR和MASTER_PORT?可能还是需要的,因为DDP的初始化需要这些参数,即使只有一个进程。例如,在初始化进程组的时候,需要指定后端、init_method,这时候可能需要用到MASTER_ADDR和MASTER_PORT。 总结下来,正确的配置步骤应该是:在单机单卡的情况下,如果需要使用分布式训练框架(如PyTorch DDP),则设置MASTER_ADDR为localhost,MASTER_PORT为可用的端口号,如29500。然后在启动脚本时,指定rank为0,world_size为1。这可能适用于用户的情况,即虽然只有单卡,但代码可能需要分布式设置的环境变量。 此外,可能需要提醒用户,单机单卡通常不需要分布式配置,但某些框架或代码可能需要这些参数的存在,比如在测试或准备扩展时。因此,正确设置这些参数可以确保代码的正确运行,或者为未来扩展到多卡做准备。 最后,用户可能需要示例代码或者命令行的设置方法。例如,在运行脚本前,在终端中设置环境变量: export MASTER_ADDR=localhost export MASTER_PORT=29500 或者在Python代码中通过os.environ设置。 同时,需要注意端口号是否被占用,避免冲突。建议用户选择一个不常用的端口,比如在29500到29505之间,如引用[2]中的示例可能使用类似端口。 所以,回答的结构应该是:首先解释这两个变量的作用,然后说明在单机单卡的情况下如何设置,包括具体步骤和示例,最后提醒注意事项和相关问题。</think>### 如何在单机单卡服务器中配置 MASTER_ADDR 和 MASTER_PORT #### 配置背景 在分布式训练或多进程通信中,`MASTER_ADDR` 和 `MASTER_PORT` 是协调进程间通信的关键参数[^1][^3]。尽管单机单卡场景下不涉及多设备并行,但某些框架(如 PyTorch DDP)可能需要这些参数来初始化进程组,即使仅用于本地测试或未来扩展。 --- #### 配置步骤 1. **定义 `MASTER_ADDR`** 在单机环境中,`MASTER_ADDR` 应设置为本地回环地址: ```bash export MASTER_ADDR=127.0.0.1 # 或 localhost ``` 2. **选择 `MASTER_PORT`** 需确保端口未被占用(例如选择 `29500`): ```bash export MASTER_PORT=29500 # 范围建议:29500-29505 ``` 3. **设置分布式训练参数** 即使单卡,仍需指定进程的 `rank`(当前进程编号)和 `world_size`(总进程数): ```python import os os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = "29500" rank = 0 # 单卡时固定为 0 world_size = 1 # 总进程数为 1 ``` 4. **初始化进程组(以 PyTorch 为例)** ```python import torch.distributed as dist dist.init_process_group( backend="nccl" if torch.cuda.is_available() else "gloo", init_method="env://", rank=rank, world_size=world_size ) ``` --- #### 注意事项 - **端口冲突**:若端口被占用,需更换其他端口(如 `29501`)。 - **框架兼容性**:单卡场景下,`DataParallel`(DP)无需这些配置,仅需 `DDP` 或自定义多进程时使用[^4][^5]。 - **扩展性**:此配置可为未来升级到单机多卡或多机训练保留兼容性[^5]。 --- #### 示例代码片段 ```python import os import torch import torch.distributed as dist def setup_single_gpu(): os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = "29500" dist.init_process_group(backend="nccl", rank=0, world_size=1) # 后续模型初始化与训练代码 ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值