从前几节的训练看,无论是房价预测任务还是MNIST手写字数字识别任务,训练好一个模型不会超过10分钟,主要原因是我们所使用的神经网络比较简单。但实际应用时,常会遇到更加复杂的机器学习或深度学习任务,需要运算速度更高的硬件(如GPU、NPU),甚至同时使用多个机器共同训练一个任务(多卡训练和多机训练)。本节我们依旧横向展开"横纵式"教学方法,如图1所示,探讨在手写数字识别任务中,通过资源配置的优化,提升模型训练效率的方法
图1:“横纵式”教学法 — 资源配置
前提条件
需要先进行数据处理、设计神经网络结构,代码与上一节保持一致,此处直接调用封装好的代码。
In [1]
import paddle
from data_process import get_MNIST_dataloader
from MNIST_network import MNIST
train_loader, test_loader = get_MNIST_dataloader()
2.7.1 程序运行的全局设备
paddle.device.get_device功能返回当前程序运行的全局设备,返回的是一个类似于cpu、 gpu:x、 xpu:x
或者npu:x
字符串,如果没有设置全局设备,当cuda可用的时候返回gpu:0
,当cuda不可用的时候返回cpu
。由于GPU通常为多个计算卡的结构,返回结果gpu:0
中冒号后面的0代表0号卡。如果是4卡的GPU,编号分别为0、1、2、3。
下面通过代码示例查看当前程序运行的全局设备:
In [2]
import paddle
device = paddle.device.get_device()
print("device:",device)
device: gpu:0
如果您启动项目时选用的是GPU,那么会输出device: gpu:0
。
在飞桨中,可通过place
函数查看一个Tensor的设备位置。张量可能的设备位置有三种:CPU/GPU/固定内存,其中固定内存也称为不可分页内存或锁页内存, 其与GPU之间具有更高的读写效率,并且支持异步传输,这对网络整体性能会有进一步提升,但其缺点是分配空间过多时可能会降低主机系统的性能, 因为其减少了用于存储虚拟内存数据的可分页内存。
如果想将CPU上的Tensor拷贝到GPU上,通过cuda(device_id=None, blocking=False)
函数完成。如果当前Tensor已经在GPU上,且device_id为None,则不会发生任何拷贝。具体参数说明如下:
- device_id (int, optional) - 目标GPU的设备Id,默认为None,此时为当前Tensor所在的设备Id,如果当前Tensor不在GPU上,则为0。
- blocking (bool, optional) - 如果为False并且当前Tensor处于固定内存上,将会发生主机到设备端的异步拷贝。否则,会发生同步拷贝。默认为False。
经过上述操作后, 返回的Tensor不保留在原计算图中。
下面我们在CPU上创建一个Tensor,获取其设备位置,然后将该Tensor拷贝到GPU上,再次获取设备位置:
In [3]
import paddle
x = paddle.to_tensor(1.0, place=paddle.CPUPlace())
print(x.place) # CPUPlace
y = x.cuda()
print(y.place) # CUDAPlace(0)
CPUPlace
CUDAPlace(0)
W0901 16:57:38.553731 145 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 10.1
W0901 16:57:38.558326 145 device_context.cc:465] device: 0, cuDNN Version: 7.6.
2.7.2 单GPU训练
通过paddle.device.set_device API,设置在GPU上训练还是CPU上训练。
paddle.device.set_device (device)
参数 device (str):此参数确定特定的运行设备,可以是cpu
、gpu:x
或者是xpu:x
。其中,x
是GPU或XPU的编号。当device是cpu
时, 程序在CPU上运行;当device是gpu:x
时,程序在GPU上运行。
In [5]
import paddle.nn.functional as F
#仅优化算法的设置有所差别
def train(model):
#开启GPU
use_gpu = True
paddle.device.set_device('gpu:0') if use_gpu else paddle.device.set_device('cpu')
model.train()
#设置不同初始学习率
opt = paddle.optimizer.Adam(learning_rate=0.01, parameters=model.parameters())
EPOCH_NUM = 5
for epoch_id in range(EPOCH_NUM):
for batch_id, data in enumerate(train_loader()):
#准备数据,变得更加简洁
images, labels = data
images = paddle.to_tensor(images)
labels = paddle.to_tensor(labels)
#前向计算的过程
predicts = model(images)
#计算损失,取一个批次样本损失的平均值
loss = F.cross_entropy(predicts, labels)
avg_loss = paddle.mean(loss)
#每训练了100批次的数据,打印下当前Loss的情况
if batch_id % 200 == 0:
print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, avg_loss.numpy()))
#后向传播,更新参数的过程
avg_loss.backward()
opt.step()
opt.clear_grad()
#保存模型参数
paddle.save(model.state_dict(), 'mnist.pdparams')
#创建模型
model = MNIST()
#启动训练过程
train(model)
epoch: 0, batch: 0, loss is: [3.3544707]
epoch: 0, batch: 200, loss is: [0.31601915]
epoch: 0, batch: 400, loss is: [0.24964087]
epoch: 0, batch: 600, loss is: [0.0728729]
epoch: 0, batch: 800, loss is: [0.02721875]
epoch: 4, batch: 0, loss is: [0.01339576]...
epoch: 4, batch: 200, loss is: [0.2479971]
epoch: 4, batch: 400, loss is: [0.02366359]
epoch: 4, batch: 600, loss is: [0.04403502]
epoch: 4, batch: 800, loss is: [0.08038075]
尝试把use_gpu
设置成False,训练5个epoch需要的时间是GPU用时的10倍左右,可见GPU的并行能力要比CPU强大很多。
2.7.3 分布式训练
在工业实践中,很多较复杂的任务需要使用更强大的模型。强大模型加上海量的训练数据,经常导致模型训练耗时严重。比如在计算机视觉分类任务中,训练一个在ImageNet数据集上精度表现良好的模型,大概需要一周的时间,因为过程中我们需要不断尝试各种优化的思路和方案。如果每次训练均要耗时1周,这会大大降低模型迭代的速度。在机器资源充沛的情况下,建议采用分布式训练,大部分模型的训练时间可压缩到小时级别。
分布式训练有两种基本的实现模式:模型并行和数据并行。
2.7.3.1 模型并行
模型并行是将一个网络模型拆分为多份,拆分后的模型分到多个设备上(GPU)训练,每个设备的训练数据是相同的。模型并行的实现模式可以节省内存,但是应用较为受限。
模型并行的方式一般适用于如下两个场景:
- 模型架构过大: 完整的模型无法放入单个GPU。如2012年ImageNet大赛的冠军模型AlexNet是模型并行的典型案例,由于当时GPU内存较小,单个GPU不足以承担AlexNet,因此研究者将AlexNet拆分为两部分放到两个GPU上并行训练。
- 网络模型的结构设计相对独立: 当网络模型的设计结构可以并行化时,采用模型并行的方式。如在计算机视觉目标检测任务中,一些模型(如YOLO9000)的边界框回归和类别预测是独立的,可以将独立的部分放到不同的设备节点上完成分布式训练。
2.7.3.2 数据并行
数据并行与模型并行不同,数据并行每次读取多份数据,读取到的数据输入给多个设备(GPU)上的模型,每个设备上的模型是完全相同的,飞桨采用的就是这种方式。
说明:
当前GPU硬件技术快速发展,深度学习使用的主流GPU的内存已经足以满足大多数的网络模型需求,所以大多数情况下使用数据并行的方式。
数据并行的方式与众人拾柴火焰高的道理类似,如果把训练数据比喻为砖头,把一个设备(GPU)比喻为一个人,那单GPU训练就是一个人在搬砖,多GPU训练就是多个人同时搬砖,每次搬砖的数量倍数增加,效率呈倍数提升。值得注意的是,每个设备的模型是完全相同的,但是输入数据不同,因此每个设备的模型计算出的梯度是不同的。如果每个设备的梯度只更新当前设备的模型,就会导致下次训练时,每个模型的参数都不相同。因此我们还需要一个梯度同步机制,保证每个设备的梯度是完全相同的。
梯度同步有两种方式:PRC通信方式和NCCL2通信方式(Nvidia Collective multi-GPU Communication Library)。
(1)PRC通信方式
PRC通信方式通常用于CPU分布式训练,它有两个节点:参数服务器Parameter server和训练节点Trainer,结构如图2所示。
图2:Pserver通信方式的结构
parameter server收集来自每个设备的梯度更新信息,并计算出一个全局的梯度更新。Trainer用于训练,每个Trainer上的程序相同,但数据不同。当Parameter server收到来自Trainer的梯度更新请求时,统一更新模型的梯度。
(2)NCCL2通信方式(Collective)
当前飞桨的GPU分布式训练使用的是基于NCCL2的通信方式,结构如图3所示。
图3:NCCL2通信方式的结构
相比PRC通信方式,使用NCCL2(Collective通信方式)进行分布式训练,不需要启动Parameter server进程,每个Trainer进程保存一份完整的模型参数,在完成梯度计算之后通过Trainer之间的相互通信,Reduce梯度数据到所有节点的所有设备,然后每个节点在各自完成参数更新。
飞桨提供了便利的数据并行训练方式,用户只需要对程序进行简单修改,即可实现在多GPU上并行训练(NCCL2的通信方式)。接下来将讲述如何将一个单机程序通过简单的改造,变成单机多卡程序。
单机多卡程序通过如下两步改动即可完成:
1)初始化并行环境。
2)使用paddle.DataParallel封装模型。
后续通过启动时候指定运行程序的多个GPU卡,飞桨会自动切分数据进行多卡分布式训练,加速训练过程。
In [6]
import paddle
import paddle.distributed as dist
def train_multi_gpu(model):
# 修改1- 初始化并行环境
dist.init_parallel_env()
# 修改2- 增加paddle.DataParallel封装
model = paddle.DataParallel(model)
model.train()
opt = paddle.optimizer.Adam(learning_rate=0.01, parameters=model.parameters())
EPOCH_NUM = 5
for epoch_id in range(EPOCH_NUM):
for batch_id, data in enumerate(train_loader()):
#准备数据,变得更加简洁
images, labels = data
images = paddle.to_tensor(images)
labels = paddle.to_tensor(labels)
#前向计算的过程
predicts = model(images)
#计算损失,取一个批次样本损失的平均值
loss = F.cross_entropy(predicts, labels)
avg_loss = paddle.mean(loss)
#每训练了100批次的数据,打印下当前Loss的情况
if batch_id % 200 == 0:
print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, avg_loss.numpy()))
#后向传播,更新参数的过程
avg_loss.backward()
opt.step()
opt.clear_grad()
#保存模型参数
paddle.save(model.state_dict(), 'mnist.pdparams')
#创建模型
model = MNIST()
#启动训练过程
train_multi_gpu(model)
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/distributed/parallel.py:136: UserWarning: Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything.
"Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything."
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/parallel.py:596: UserWarning: The program will return to single-card operation. Please check 1, whether you use spawn or fleetrun to start the program. 2, Whether it is a multi-card program. 3, Is the current environment multi-card.
warnings.warn("The program will return to single-card operation. "
epoch: 0, batch: 0, loss is: [4.0620155]
epoch: 0, batch: 200, loss is: [0.1424572]
epoch: 0, batch: 400, loss is: [0.27101123]
epoch: 0, batch: 600, loss is: [0.11927377]
epoch: 0, batch: 800, loss is: [0.07573487]....
epoch: 4, batch: 0, loss is: [0.01736185]
epoch: 4, batch: 200, loss is: [0.02390713]
epoch: 4, batch: 400, loss is: [0.01427157]
epoch: 4, batch: 600, loss is: [0.23381296]
epoch: 4, batch: 800, loss is: [0.04849435]
2.7.4 多GPU训练
启动多GPU的训练,有两种方式:1)基于launch启动;2)基于spawn方式启动。
2.7.4.1 基于launch方式启动
需要在命令行中设置参数变量。打开终端,运行如下命令:
单机单卡启动,默认使用第0号卡。
$ python train.py
单机多卡启动,默认使用当前可见的所有卡。
$ python -m paddle.distributed.launch train.py
单机多卡启动,设置当前使用的第0号和第1号卡。
$ python -m paddle.distributed.launch --gpus '0,1' --log_dir ./mylog train.py
$ export CUDA_VISIABLE_DEVICES='0,1'
$ python -m paddle.distributed.launch train.py
相关参数含义如下:
- paddle.distributed.launch:启动分布式运行。
- gpus:设置使用的GPU的序号(需要是多GPU卡的机器,通过命令watch nvidia-smi查看GPU的序号)。
- log_dir:存放训练的log,若不设置,每个GPU上的训练信息都会打印到屏幕。
- train.py:多GPU训练的程序,包含修改过的train_multi_gpu()函数。
训练完成后,在指定的./mylog文件夹下会产生四个日志文件,其中worklog.0的内容如下:
In [ ]
grep: warning: GREP_OPTIONS is deprecated; please use an alias or script
dev_id 0
I1104 06:25:04.377323 31961 nccl_context.cc:88] worker: 127.0.0.1:6171 is not ready, will retry after 3 seconds...
I1104 06:25:07.377645 31961 nccl_context.cc:127] init nccl context nranks: 3 local rank: 0 gpu id: 1↩
W1104 06:25:09.097079 31961 device_context.cc:235] Please NOTE: device: 1, CUDA Capability: 61, Driver API Version: 10.1, Runtime API Version: 9.0
W1104 06:25:09.104460 31961 device_context.cc:243] device: 1, cuDNN Version: 7.5.
start data reader (trainers_num: 3, trainer_id: 0)
epoch: 0, batch_id: 10, loss is: [0.47507238]
epoch: 0, batch_id: 20, loss is: [0.25089613]
epoch: 0, batch_id: 30, loss is: [0.13120805]
epoch: 0, batch_id: 40, loss is: [0.12122715]
epoch: 0, batch_id: 50, loss is: [0.07328521]
epoch: 0, batch_id: 60, loss is: [0.11860339]
epoch: 0, batch_id: 70, loss is: [0.08205047]
epoch: 0, batch_id: 80, loss is: [0.08192863]
epoch: 0, batch_id: 90, loss is: [0.0736289]
epoch: 0, batch_id: 100, loss is: [0.08607423]
start data reader (trainers_num: 3, trainer_id: 0)
epoch: 1, batch_id: 10, loss is: [0.07032011]
epoch: 1, batch_id: 20, loss is: [0.09687119]
epoch: 1, batch_id: 30, loss is: [0.0307216]
epoch: 1, batch_id: 40, loss is: [0.03884467]
epoch: 1, batch_id: 50, loss is: [0.02801813]
epoch: 1, batch_id: 60, loss is: [0.05751991]
epoch: 1, batch_id: 70, loss is: [0.03721186]
.....
File"<ipython-input-4-badeaaa747bb>", line1grep: warning: GREP_OPTIONS is deprecated; please use an alias or script^SyntaxError:invalid syntax
2.7.4.2 基于spawn方式启动
Launch方式启动训练,是以文件为单位启动多进程,需要用户在启动时调用paddle.distributed.launch
,对于进程的管理要求较高;飞桨最新版本中,增加了spawn启动方式,可以更好地控制进程,在日志打印、训练和退出时更加友好。spawn方式和launch方式仅在启动上有所区别。
In [7]
# 用法一:启动train多进程训练,默认使用所有可见的GPU卡。
# 只传入函数,训练函数不需要任何参数
if __name__ == '__main__':
dist.spawn(train)
In [9]
# 用法二:传入函数和参数
# 当训练函数需要一些参数时,利用所有可见设备并行训练
if __name__ == '__main__':
dist.spawn(train, args=(model,))
In [ ]
# 用法三:传入函数,参数和进程数目
# 当训练函数需要参数,仅使用部分可见的设备并行训练
# 如果当前机器有8张卡,并且均可见,下面的例子将使用0号和1号卡
# 如果设置CUDA_VISIBLE_DEVICES=4,5,6,7,该例子将会使用4和5号卡
if __name__ == '__main__':
dist.spawn(train, args=(model,), nprocs=2)
In [ ]
# 用法四:输入函数,参数,进程数目和gpus
# 如果训练函数需要一些参数,并且只使用部分可见的设备用于并行训练,但是不能设置机器环境变量CUDA_VISIBLE_DEVICES,如该变量为None或所有卡,
# 通过输入gpus来选择想要使用的卡。
if __name__ == '__main__':
dist.spawn(train, args=(model,), nprocs=2, gpus='4,5')