逻辑斯谛回归(LR)是经典的分类方法
由逻辑斯谛分布(分布函数是S型曲线)---->二项逻辑斯谛回归模型---->多项逻辑斯谛回归模型
逻辑斯谛回归模型源自逻辑斯谛分布,其分布函数 F ( x ) F(x) F(x)是 S S S形函数。逻辑斯谛回归模型是由输入的线性函数表示的输出的对数几率模型。
我们把发生概率/不发生概率称之为一个事件的几率,对其取对数为对数几率,将将二项的逻辑斯谛回归的条件概率形式代入,得到对数几率是由输入的x的线性函数的模型;利用极大似然估计法估计模型参数w,从而得到逻辑斯谛回归模型。
逻辑斯谛回归模型是由以下条件概率分布表示的分类模型,形式为参数化的逻辑斯谛分布。逻辑斯谛回归模型可以用于二类或多类分类。这是推广的多项逻辑斯谛回归模型:
P ( Y = k ∣ x ) = exp ( w k ⋅ x ) 1 + ∑ k = 1 K − 1 exp ( w k ⋅ x ) , k = 1 , 2 , ⋯ , K − 1 P(Y=k | x)=\frac{\exp \left(w_{k} \cdot x\right)}{1+\sum_{k=1}^{K-1} \exp \left(w_{k} \cdot x\right)}, \quad k=1,2, \cdots, K-1 P(Y=k∣x)=1+∑k=1K−1exp(wk⋅x)exp(wk⋅x),k=1,2,⋯,K−1
P ( Y = K ∣ x ) = 1 1 + ∑ k = 1 K − 1 exp ( w k ⋅ x ) P(Y=K | x)=\frac{1}{1+\sum_{k=1}^{K-1} \exp \left(w_{k} \cdot x\right)} P(Y=K∣x)=1+∑k=1K−1exp(wk⋅x)1
这里, x x x为输入特征, w w w为特征的权值(包含权重和偏置,x向量中x_0 为1)。
1、逻辑回归的原理
理想的替代函数应当预测分类为0或1的概率,当为1的概率大于0.5时,判断为1,当为1的概率小于0.5时,判断为0。因概率的值域为 [ 0 , 1 ] [0,1] [0,1],这样的设定比线性回归合理很多。
sigmoid函数曲线与阶跃函数曲线很相似,而且sigmoid函数求导方便。z>0, sigmoid(z)>0.5, z<0 sigmoid(z)<0.5,其本身具有分类属性,函数在0到1之间。
sigmoid函数连续可以借用方程θX表示z, 假设θX>0,y=1, θX<0,y=0完成分类。这样就把未知的分类问题转换成了已经熟悉的线性回归问题,易于理解。
Sigmoid函数:
h ( z ) = 1 1 + e − z h(z) = \frac{1}{1+e^{-z}} h(z)=1+e−z1
其中, z = θ T x z = \theta^T x z=θTx
我们可以采用以下“单位阶跃函数”来判断数据的类别:
h ( z ) = { 0 , z < 0 0.5