DW 逻辑回归

逻辑斯谛回归(LR)是经典的分类方法

由逻辑斯谛分布(分布函数是S型曲线)---->二项逻辑斯谛回归模型---->多项逻辑斯谛回归模型

逻辑斯谛回归模型源自逻辑斯谛分布,其分布函数 F ( x ) F(x) F(x) S S S形函数。逻辑斯谛回归模型是由输入的线性函数表示的输出的对数几率模型。

我们把发生概率/不发生概率称之为一个事件的几率,对其取对数为对数几率,将将二项的逻辑斯谛回归的条件概率形式代入,得到对数几率是由输入的x的线性函数的模型;利用极大似然估计法估计模型参数w,从而得到逻辑斯谛回归模型。

逻辑斯谛回归模型是由以下条件概率分布表示的分类模型,形式为参数化的逻辑斯谛分布。逻辑斯谛回归模型可以用于二类或多类分类。这是推广的多项逻辑斯谛回归模型:

P ( Y = k ∣ x ) = exp ⁡ ( w k ⋅ x ) 1 + ∑ k = 1 K − 1 exp ⁡ ( w k ⋅ x ) , k = 1 , 2 , ⋯   , K − 1 P(Y=k | x)=\frac{\exp \left(w_{k} \cdot x\right)}{1+\sum_{k=1}^{K-1} \exp \left(w_{k} \cdot x\right)}, \quad k=1,2, \cdots, K-1 P(Y=kx)=1+k=1K1exp(wkx)exp(wkx),k=1,2,,K1

P ( Y = K ∣ x ) = 1 1 + ∑ k = 1 K − 1 exp ⁡ ( w k ⋅ x ) P(Y=K | x)=\frac{1}{1+\sum_{k=1}^{K-1} \exp \left(w_{k} \cdot x\right)} P(Y=Kx)=1+k=1K1exp(wkx)1
这里, x x x为输入特征, w w w为特征的权值(包含权重和偏置,x向量中x_0 为1)。

1、逻辑回归的原理

理想的替代函数应当预测分类为0或1的概率,当为1的概率大于0.5时,判断为1,当为1的概率小于0.5时,判断为0。因概率的值域为 [ 0 , 1 ] [0,1] [0,1],这样的设定比线性回归合理很多。

sigmoid函数曲线与阶跃函数曲线很相似,而且sigmoid函数求导方便。z>0, sigmoid(z)>0.5, z<0 sigmoid(z)<0.5,其本身具有分类属性,函数在0到1之间。
sigmoid函数连续可以借用方程θX表示z, 假设θX>0,y=1, θX<0,y=0完成分类。这样就把未知的分类问题转换成了已经熟悉的线性回归问题,易于理解。

Sigmoid函数:
h ( z ) = 1 1 + e − z h(z) = \frac{1}{1+e^{-z}} h(z)=1+ez1
其中, z = θ T x z = \theta^T x z=θTx

我们可以采用以下“单位阶跃函数”来判断数据的类别:
h ( z ) = { 0 , z < 0 0.5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值