弱监督目标检测论文阅读(一)

该博客探讨了弱监督目标检测的最新研究,尤其是通过Generative Adversarial Learning实现快速检测。论文提出了一种新的一步检测器,即使在没有精确边界框标签的情况下,也能保持高效和准确性。通过Generator G、Discriminator D和Surrogator F的协同工作,模型能够利用图像级标签进行训练,提高检测性能。
摘要由CSDN通过智能技术生成

最近打算持续更新一些关于弱监督目标检测的论文随笔,欢迎有研究相关方向的各位来相互交流,有提一些建议的就更欢迎了。
(下面的介绍有很多都是概括,并非翻译)
(文中提到的参考文献请前往原文查找,此处不做额外附加)

Generative Adversarial Learning Towards Fast Weakly Supervised Detection

摘要

弱监督目标检测近期备受关注,但是和全监督的一步检测算法相比,在计算速度上有很大差距。这篇论文创建了一个一步检测器,在保证检测速度的同时检测效果也很好

介绍

弱监督目标检测不需要大量全部标记的目标框,而是需要图像级别的标定,这些在网络上十分容易获得。为了利用那些只有图像级标签的数据,之前的大多弱监督方法都采用了MIL(Multiple Instance Learning)结构。在这种结构中,一张图像的目标建议被认为是一个包中的实例,与之对应的标签来自相应的图像级标签。随后,Objective将估计实例中包含给定,目标的可能性。

相关工作

相关的工作主要分为弱监督检测(WSD)和快速目标检测两部分。
就以往的WSD算法而言,大多是两步或多步网络结构;如文中提到的有目标建议生成、特征提取和建议分类组成的网络。在研究历史中,有大量的算法被不断提出,详见论文。在提出的方法中也有很多端到端的网络。

GAN

GAN同样存在着很多相关工作,包括提升网络稳定性,图像生成,representation learning,风格迁移和图像超分辨率。同样,也有少量一些与目标检测结合的网络

提出的方法

Generative Adversarial Learning for FastWSD

典型的快速一步检测器学习如何适配,目标的gt bbox。当转向WSD时,目标的bbox标签无法获得,只能获得图像级标签。对于快速WSD而言,通常的解决方案是训练检测器去拟合估计的gt。尽管如此,损失函数仍是按照非估计gt设计的。受到使用GAN设计的估计生成模型的影响,引入了对抗损失使检测器只需要图像级别的标定。

训练时:
1 discriminator D用于区分生成的bbox和估计的bbox
2 generator 更新以获得更多高质量的bbox以模仿Pb的分布
同时引入更多的损失函数设计(见原文)

文章中设计了F以估计准确的建议
G是单独的检测器,无需其他部分辅助
F和G在训练过程中都会得到加强

Model Architecture
Generator G

G用于估计目标位置和属于各类别的概率,属于一步网络。两步网络因RPN或其他目标选择网络不能采用。之前的设计中&#x

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值