这两篇论文都是对小目标检测进行改进的算法,AZ-NET是一篇2016年的CVPR论文,而PGAN则是2017CVPR的一篇论文,二者之间采用了不同的方法,在本文中将对二者主要采用的方法进行介绍并对二者的检测效果进行对比。
原文地址:
AZ-NET 原文
PGAN 原文
AZ-NET
AZ-NET:一种基于fast rcnn改进的算法,去除掉了selective search的预选方法,采用了AZ-NET对于临近区域进行检测并给出一组相应的输出数据包括:是否进一步放大或分割区域,临近区域的预测边界框和置信率。对于一个包含小目标的区域,算法能够持续进行细化分割区域,以便实现最终的检测。小目标的检测在两步网络的主要问题是第一步的区域建议可能存在问题,对于第二步的检测错误率相对较低,因此第一步的建议框选至关重要。目前比较常用的两步检测算法是faster rcnn,该算法在第一步采用了RPN结构,在VGG16提取的feature map中采取固定大小的anchor对目标进行检测,然而这一步骤在计算中必然占用大量时间和内存资源,同样由于anchor的固定尺寸对于和anchor尺寸匹配不佳的目标将难以准确检测,因此对于目标大小的自适应区域建议检测是有必要的,尤其对于小目标的检测。从检测效果来看,AZ-NET始终略由于RPN,如图: