取石子游戏
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3381 Accepted Submission(s): 1981
Problem Description
1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍。取完者胜.先取者负输出"Second win".先取者胜输出"First win".
Input
输入有多组.每组第1行是2<=n<2^31. n=0退出.
Output
先取者负输出"Second win". 先取者胜输出"First win".
参看Sample Output.
参看Sample Output.
Sample Input
2 13 10000 0
Sample Output
Second win Second win First win
Source
找规律打表 2 3 4 5 6 7 8 9 10
NNP N P PNP P
发现斐波那契数上的状态都会输。 对于大于fac[i](斐波那契数列)
小于fac[i+1],n-fac[i]又是一个一样的博弈,但是性质一样。所以算n有几个斐波那契数组成即可
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
long long fac[50];
int main(){
fac[0] = 1;
fac[1] = 2;
for(int i = 2;i < 50;i++){
fac[i] = fac[i-1]+fac[i-2];
}
int n;
while(scanf("%d",&n),n){
int t = 0;
while(n){
int i = upper_bound(fac,fac+50,n) - fac;
n -= fac[i-1];
t++;
}
if(t % 2 == 0) printf("First win\n");
else printf("Second win\n");
}
return 0;
}