5、联邦学习资源管理与收敛率分析

联邦学习资源管理与收敛率分析

1. 联邦学习训练损失最小化的资源管理

在联邦学习(FL)中,资源管理对于实现训练损失最小化至关重要。其中涉及到多个关键因素,如延迟要求、能量消耗和资源分配等。

  • 符号说明

    • $\gamma_T$:实现FL算法的延迟要求。
    • $\gamma_E$:FL算法的能量消耗。
    • $B$:总下行链路带宽。
  • 资源分配约束条件

    1. 每个用户在进行上行数据传输时只能占用一个资源块(RB)。
    2. 执行FL算法在每个学习步骤所需的延迟有特定要求。
    3. 执行FL算法在每个学习步骤有能量消耗要求。
    4. 每个上行RB最多只能分配给一个用户。
    5. 存在最大发射功率约束。

用户选择向量 $\mathbf{a}$、RB分配矩阵 $\mathbf{R}$ 和发射功率向量 $\mathbf{P}$ 在FL训练过程中保持不变,并且优化后的 $\mathbf{a}$、$\mathbf{R}$ 和 $\mathbf{P}$ 必须满足每个学习步骤的延迟和能量消耗要求。

发射功率和资源分配决定了数据包错误率,进而影响全局FL模型的更新。因此,FL算法的损失函数依赖于资源分配和发射功率。在实际的FL算法中,用户需要满足特定的延迟要求,基站(BS)必须等待

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值