联邦学习资源管理与收敛率分析
1. 联邦学习训练损失最小化的资源管理
在联邦学习(FL)中,资源管理对于实现训练损失最小化至关重要。其中涉及到多个关键因素,如延迟要求、能量消耗和资源分配等。
-
符号说明 :
- $\gamma_T$:实现FL算法的延迟要求。
- $\gamma_E$:FL算法的能量消耗。
- $B$:总下行链路带宽。
-
资源分配约束条件 :
- 每个用户在进行上行数据传输时只能占用一个资源块(RB)。
- 执行FL算法在每个学习步骤所需的延迟有特定要求。
- 执行FL算法在每个学习步骤有能量消耗要求。
- 每个上行RB最多只能分配给一个用户。
- 存在最大发射功率约束。
用户选择向量 $\mathbf{a}$、RB分配矩阵 $\mathbf{R}$ 和发射功率向量 $\mathbf{P}$ 在FL训练过程中保持不变,并且优化后的 $\mathbf{a}$、$\mathbf{R}$ 和 $\mathbf{P}$ 必须满足每个学习步骤的延迟和能量消耗要求。
发射功率和资源分配决定了数据包错误率,进而影响全局FL模型的更新。因此,FL算法的损失函数依赖于资源分配和发射功率。在实际的FL算法中,用户需要满足特定的延迟要求,基站(BS)必须等待
超级会员免费看
订阅专栏 解锁全文
716

被折叠的 条评论
为什么被折叠?



