傅里叶变换的推导

函数 f L ( t ) f_L(t) fL(t) L L L ( L > 0 ) (L>0) (L>0)为周期,在区间 [ − L 2 , L 2 ] [-\frac L2,\frac L2] [2L,2L]上连续(或满足迪利克雷条件),则 f L ( t ) f_L(t) fL(t) [ − L 2 , L 2 ] [-\frac L2,\frac L2] [2L,2L]上可以展成傅里叶级数

f L ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n ω t + b n sin ⁡ n ω t ) .  f_{L}(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega t+b_{n} \sin n \omega t\right) \text {. } fL(t)=2a0+n=1(ancosnωt+bnsinnωt)

其中

ω = 2 π L a n = 2 L ∫ − L 2 L 2 f L ( t ) cos ⁡ n ω t d t . n = 0 , 1 , 2 … b n = 2 L ∫ − L 2 L 2 f L ( t ) sin ⁡ n ω t d t . n = 1 , 2 , ⋯ \begin{aligned} &\omega=\frac{2\pi}{L} \\ &a_{n}=\frac{2}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f_{L}(t) \cos n \omega t d t . \quad n=0,1,2 \ldots \\ &b_{n}=\frac{2}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f_{L}(t) \sin { n \omega t } d t . \quad n=1,2, \cdots \end{aligned} ω=L2πan=L22L2LfL(t)cosnωtdt.n=0,1,2bn=L22L2LfL(t)sinnωtdt.n=1,2,

那么有

cos ⁡ t = e i t + e − i t 2 \cos t=\frac{e^{i t}+e^{-i t}}{2} cost=2eit+eit
sin ⁡ t = − i e i t − e − i t 2 \sin t=-i \frac{e^{i t}-e^{-i t}}{2} sint=i2eiteit


f L ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n ω t + b n sin ⁡ n ω t ) = a 0 2 + ∑ n = 1 ∞ ( a n e i n ω t + e − i n ω t 2 − i b n e i n ω t − e − i n ω t 2 ) = a 0 2 + ∑ n = 1 ∞ ( a n − i b n 2 e i n ω t + a n + i b n 2 i e − i n ω t ) \begin{aligned} f_{L}(t) &=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega t+b_{n} \sin n \omega t\right) \\ &=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \frac{e^{i n \omega t}+e^{-i n \omega t}}{2}-i b_{n} \frac{e^{i n \omega t}-e^{-i n \omega t}}{2}\right) \\ &=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(\frac{a_{n}-i b_{n}}{2} e^{i n \omega t}+\frac{a_{n}+i b_{n}}{2 i} e^{-i n \omega t}\right) \end{aligned} fL(t)=2a0+n=1(ancosnωt+bnsinnωt)=2a0+n=1(an2einωt+einωtibn2einωteinωt)=2a0+n=1(2anibneinωt+2ian+ibneinωt)

我们令
c 0 = a 0 2 = 1 L ∫ − ∞ ∞ f L ( t ) d t c_{0}=\frac{a_{0}}{2}=\frac{1}{L} \int_{-\infty}^{\infty} f_{L}(t) d t c0=2a0=L1fL(t)dt

c n = a n − i b n 2 c_{n}=\frac{a_{n}-i b_{n}}{2} cn=2anibn

c − n = a n + i b n 2 {c_{-n}}=\frac{a_{n}+i b_{n}}{2} cn=2an+ibn

那么有

C n = 1 L ∫ − L 2 L 2 f L ( t ) e − i n ω t t d t n = 0 , ± 1 , ± 2 , … C_{n}=\frac{1}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f_{L}(t) e^{-i n \omega t t} d t \quad n=0, \pm 1,\pm 2, \ldots Cn=L12L2LfL(t)einωttdtn=0,±1,±2,

f L ( t ) = c 0 + ∑ n = 1 ∞ ( c n e i n ω t + c i n e − i n ω t ) = ∑ n = − ∞ ∞ C n e i n u t t = ∑ n = − ∞ ∞ ( 1 2 ∫ − L 2 L 2 f L ( τ ) e − i n ω t d τ ) e i n ω t \begin{aligned} f_{L}(t) &=c_{0}+\sum_{n=1}^{\infty}\left(c_{n} e^{i n \omega t}+c_{i n} e^{-i n \omega t}\right) \\ &=\sum_{n=-\infty}^{\infty} C_{n} e^{i n u t t} \\ &=\sum_{n=-\infty}^{\infty}\left(\frac{1}{2} \int_{-\frac{L}{2}}^{\frac{L}{2}} f_{L}(\tau) e^{-i n \omega t} d \tau \right) e^{i n \omega t} \end{aligned} fL(t)=c0+n=1(cneinωt+cineinωt)=n=Cneinutt=n=(212L2LfL(τ)einωtdτ)einωt

我们考虑非周期函数在区间 [ − L 2 , L 2 ] [-\frac L2,\frac L2] [2L,2L]上的情况。令

f ( t ) = ∑ n = − ∞ ∞ c n e i n ω t ( − L 2 < t < L 2 ) . ∗ f(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{ {in\omega t }}\left(-\frac{L}{2}<t<\frac{L}{2}\right). \quad* f(t)=n=cneinωt(2L<t<2L).

其中

c n = 1 L ∫ − L 2 L 2 f ( t ) e − i n ω τ d τ . c_{n}=\frac{1}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f(t) e^{-i n \omega \tau} d \tau . cn=L12L2Lf(t)einωτdτ.

我们注意到 ( ∗ ) (*) ()式右端定义了一个周期为 L L L的函数 f L 1 ( t ) = { f ( t ) − L 2 < t < L 2 f ( − L 2 ) + f ( L 2 ) 2 t = ± L 2 f_{L_{1}}(t)=\left\{\begin{array}{l}f(t) \quad-\frac{L}{2}<t<\frac{L}{2} \\ \frac{\left.f\left(-\frac{L }{2}\right)+f(\frac{L}{2}\right)}{2} \quad t=\pm \frac{L}{2}\end{array}\right. fL1(t)={f(t)2L<t<2L2f(2L)+f(2L)t=±2L

L → + ∞ L \rightarrow+\infty L+则周期函数 f L 1 ( t ) f_{L_{1}}(t) fL1(t)的极限就是 f ( t ) f(t) f(t),即有

lim ⁡ L → + ∞ f L 1 ( t ) = f ( t ) \lim _{L \rightarrow+\infty} f_{L_{1}}(t)=f(t) L+limfL1(t)=f(t)

此时,对任意 − ∞ < t < + ∞ -\infty<t<+\infty <t<+,有

f ( t ) = lim ⁡ L → + ∞ ∑ n = − ∞ + ∞ c n e i n ω t . f(t)=\lim _{L \rightarrow+\infty} \sum_{n=-\infty}^{+\infty} c_{n} e^{ {in\omega t. }} f(t)=L+limn=+cneinωt.

( ∗ ) (*) ()式右边为 ∑ n = − ∞ + ∞ c n e i n ω t . \sum_{n=-\infty}^{+\infty} c_{n} e^{ {in\omega t. }} n=+cneinωt.,其中 ω = 2 π L \omega=\frac{2 \pi}{L} ω=L2π

g n = c n L = ∫ − L 2 L 2 f ( t ) e − i n 2 π t L d t g_{n}=c_{n} L=\int_{-\frac{L}{2}}^{\frac{L}{2}} f(t) e^{\frac{-in 2 \pi t} L} d t gn=cnL=2L2Lf(t)eLin2πtdt

f L ( t ) = 1 2 π ∑ n = − ∞ ∞ g n e − i n 2 π t L [ ( n + 1 ) − n ] 2 π L = ∑ n = − ∞ ∞ ( 1 L ∫ − L 2 L 2 f L ( τ ) e − i n ω τ d τ ) e i n ω t \begin{aligned} f_{L}(t) &=\frac{1}{2\pi} \sum_{n=-\infty}^{\infty} g_{n} e^{-\frac{i n 2 \pi t}{L}} \frac{[(n+1)-n] 2\pi}{L} \\ &=\sum_{n=-\infty}^{\infty}\left(\frac{1}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f_{L}(\tau) e^{-i n \omega \tau} d \tau\right) e^{ {in\omega t }} \end{aligned} fL(t)=2π1n=gneLin2πtL[(n+1)n]2π=n=(L12L2LfL(τ)einωτdτ)einωt

ω n = n 2 π L \omega_{n}=\frac{n 2 \pi}{L} ωn=Ln2π,我们令 F [ f ( t ) ] L ( u ) = ∫ − L 2 L 2 f ( t ) e − i ω t d t \mathscr{F}\left[f(t) \right]_{L}(u)=\int_{-\frac{L}{2}}^{\frac{L}{2}} f(t) e^{-i \omega t} d t F[f(t)]L(u)=2L2Lf(t)eiωtdt,则:

f L ( t ) = 1 2 π ∑ n = − ∞ ∞ F [ f ( t ) ] L ( ω n ) e i ω n t ( ω n + 1 − ω n ) .  ∗ ∗ f_{L}(t)=\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} \mathscr{F}[f(t)]_{L}\left(\omega_{n}\right) e^{ {i\omega n } t}\left(\omega_{n+1}-\omega_{n}\right) \text {. } \quad** fL(t)=2π1n=F[f(t)]L(ωn)eiωnt(ωn+1ωn)

L → ∞ L \rightarrow \infty L时, F [ f ( t ) ] L ( ω ) \mathscr{F}[f(t)]_{L}\left(\omega\right) F[f(t)]L(ω)自然趋于一个频域函数 F [ f ( t ) ] ( ω ) = ∫ − ∞ ∞ f ( t ) e − i ω t d t \mathscr{F}[f(t)](\omega)=\int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t F[f(t)](ω)=f(t)eiωtdt。于是我们完成了从时域函数 f ( t ) f(t) f(t)到频域函数 F [ f ( t ) ] ( ω ) \mathscr{F}[f(t)]\left(\omega\right) F[f(t)](ω)的变换。我们称 F [ f ( t ) ] ( ω ) \mathscr{F}[f(t)]\left(\omega\right) F[f(t)](ω)为傅里叶变换。

随着 L → ∞ L \rightarrow \infty L Δ ω n = w n + 1 − w n → 0 \Delta \omega_{n}=w_{n+1}-w_{n} \rightarrow 0 Δωn=wn+1wn0,则 ( ∗ ∗ ) (**) ()式可看作 1 2 π ∫ − ∞ + ∞ F [ f ( t ) ] ( ω ) e i ω t d ω \frac{1}{2\pi} \int_{-\infty}^{+\infty} \mathscr{F}[f(t)](\omega) e^{i \omega t} d\omega 2π1+F[f(t)](ω)eiωtdω的黎曼和,因此导出

f ( t ) = 1 2 π ∫ − ∞ ∞ F [ f ( t ) ] ( ω ) e i ω t d ω . f(t)=\frac{1}{2\pi} \int_{-\infty}^{\infty} \mathscr{F}[f(t)](\omega) e^{i \omega t} d \omega . f(t)=2π1F[f(t)](ω)eiωtdω.

称上式为 F [ f ( t ) ] ( ω ) \mathscr{F}[f(t)](\omega) F[f(t)](ω)的傅里叶逆变换。

对已知的 g ( ω ) g(\omega) g(ω),其傅里叶逆变换记作

F − 1 [ g ( ω ) ] ( t ) = 1 2 π ∫ − ∞ ∞ g ( ω ) e i ω t d ω \mathscr{F}^{-1} [g(\omega)](t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(\omega) e^{i \omega t} d \omega F1[g(ω)](t)=2π1g(ω)eiωtdω

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值