目录
2.1 概述
优点:精度高、对异常值不敏感、无数据输入假定。
缺点:计算复杂度高、空间复杂度高。
适用数据范围:数值型和标称型。
一般流程:
- 收集数据:可以用任何方法。
- 准备数据:距离计算所需要的数据,最好是结构化的数据格式。
- 分析数据:可以使用任何方法。
- 训练算法:不适用于k-近邻算法。
- 测试算法:计算错误率。
- 使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理。
2.1.1 准备:使用Python导入数据
创建一个kNN.py文件,添加下面的代码:
from numpy import *
import operator
def createDataset () :
group = array ( [ [1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = [ 'A','A','B','B' ]
return group,labels
进入python环境,在控制台输入
>>> import kNN
>>> group,labels = kNN.createDataset()
>>> group
>>> labels
可得到如下结果:
2.1.2 从文本文件中解析数据
k-近邻算法伪代码和实际Python代码:
对未知类别属性的数据集中的每个点依次执行以下操作:
- 计算已知类别数据集中的点与当前点之间的距离;
- 按照距离递增次序排序;
- 选取与当前点距离最小的k个点;
- 确定前k个点所在类别的出现频率;
- 返回前k个点出现频率最高的类别作为当前点的预测分类。
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
欧式距离公式计算两向量点间距离:
预测数据所在分类:
kNN.classify0([0,0],group,labels,3)
改变[0,0]值,可以得到不同的结果。
2.2 示例:使用k-近邻算法改进约会网站的配对效果
2.2.1 准备数据:从文本文件中解析数据
添加下面的代码到kNN.py中:
def file2matrix(filename):
fr = open(filename)
numberOfLines = len(fr.readlines()) # get the number of lines in the file
returnMat = zeros((numberOfLines, 3)) # prepare matrix to return
classLabelVector = [] # prepare labels return
index = 0
for line in fr.readlines():
line = line.strip()
listFromLine = line.split('\t')
returnMat[index, :] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat, classLabelVector
- 打开文件,得到文件行数。
- 创建以零填充的矩阵NumPy。
- 循环处理文件中每行数据。
输入下面的命令:
import imp
imp.reload(kNN)
datingDataMat , datingLabels = kNN.file2matrix ( 'G:\\machinelearninginaction\\machinelearninginaction\\Ch02\\datingTestSet.txt ')
因为我们更新了kNN.py,所以需要重新加载以保证新的内容生效。
2.2.2 分析数据:使用Matplotlib创建散点图
import kNN
import matplotlib
import matplotlib.pyplot as plt
datingDataMat,datingLabels = kNN.file2matrix('datingTestSet.txt')
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,1],datingDataMat[:,2])
plt.show()
散点图使用了读取矩阵的第二、第三列数据,分别表示特征值“玩视频游戏所耗时间百分比”和“每周所消费的冰淇淋公升数”。
修改一部分代码,使得到的散点图更具有可读性:
import kNN
from numpy import array
import matplotlib
import matplotlib.pyplot as plt
datingDataMat,datingLabels = kNN.file2matrix('datingTestSet.txt')
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,1],datingDataMat[:,2],15.0*array(datingLabels), 15.0*array(datingLabels))
plt.show()
2.2.3 准备数据:归一化数值
在处理不同取值范围的特征值时,通常采用方法是将数值归一化,如将取值范围处理为0到1或者-1到1之间。
添加下面的代码到kNN.py中,该函数可以自动将数字特征值转化为0到1的区间。
def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - tile(minVals, (m,1))
normDataSet = normDataSet/tile(ranges, (m,1)) #element wise divide
return normDataSet, ranges, minVals
我们将每列最小值放在变量minVals中,最大值放在变量maxVals中,其中dataSet.min(0)中的参数0使得函数可以从列中选取最小值,而不是选取当前行的最小值。然后,函数计算可能的取值范围,并创建新的返回矩阵。
import kNN
from numpy import array
import matplotlib
import matplotlib.pyplot as plt
datingDataMat,datingLabels = kNN.file2matrix('datingTestSet.txt')
normMat, ranges, minVals = kNN.autoNorm(datingDataMat)
print(normMat)
2.2.4 测试算法:作为完整程序验证分类器
为测试分类器效果,在kNN.py文件中创建datingClassTest函数:
def datingClassTest():
hoRatio = 0.50 #hold out 10%
#将文件中读取数据转换为归一化特征值
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
print ("the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i]))
if (classifierResult != datingLabels[i]): errorCount += 1.0
print ("the total error rate is: %f" % (errorCount/float(numTestVecs)))
print (errorCount)
函数首先使用了file2matrix和autoNorm ()函数从文件中读取数据并将其转换为归一化特征值。接着计算测试向量的数量,此步决定了normMat向量中哪些数据用于测试,哪些数据用于分类器的训练样本;然后将这两部分数据输入到原始kNN分类器函数classify0。最后,函数计算错误率并输出结果。
import kNN
from numpy import array
import matplotlib
import matplotlib.pyplot as plt
datingDataMat,datingLabels = kNN.file2matrix('datingTestSet.txt')
normMat, ranges, minVals = kNN.autoNorm(datingDataMat)
test1 = kNN.datingClassTest()
print(test1)
该数据集错误率为6.6%。改变函数中变量hoRatio和变量k的值,错误率也会发生变化。
2.2.5 使用算法:构建完整可用系统
添加下列代码到kNN.py中:
def classifyPerson () :
resultList = [ 'not at all ' , 'in sma1l doses', 'in large doses']
percentTats = float(input ("percentage of time spent playing video games?" ) )
ffMiles = float(input ( "freguent flier miles earned per year?") )
iceCream = float(input ( "liters of ice cream consumed per year?" ) )
datingDataMat , datingLabels = file2matrix ( 'datingTestset.txt ' )
normMat , ranges, minvals = autoNorm (datingDataMat)
inArr = array( [ffMiles, percentTats, iceCream] )
classifierResult = classify0 ( (inArr-minvals) / ranges , normMat , datingLabels, 3 )
print("You will probably like this person: ",resultList [classifierResult - 1 ])
2.3 示例:手写识别系统
2.3.1 准备数据:将图像转换为测试向量
添加下列代码到kNN.py,将图像转换为向量:
def img2vector(filename):
returnVect = zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect
测试函数功能:
import kNN
from numpy import array
import matplotlib
import matplotlib.pyplot as plt
testvector = kNN.img2vector('testDigits/0_13.txt')
test1 = testvector[0,0:31]
test2 = testvector[0,32:63]
print(test1)
print(test2)
2.3.2 测试算法:使用k-近邻算法识别手写数字
将下列代码加入kNN.py中,主要功能是从os模块中导入函数listdir,它可以列出给定目录的文件名:
def handwritingClassTest():
hwLabels = []
trainingFileList = listdir('trainingDigits') #load the training set
m = len(trainingFileList)
trainingMat = zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
testFileList = listdir('testDigits') #iterate through the test set
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
print("the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr))
if (classifierResult != classNumStr): errorCount += 1.0
print("\nthe total number of errors is: %d" % errorCount)
print("\nthe total error rate is: %f" % (errorCount/float(mTest)))
- 将trainingDigits目录的文件内容存储在列表中,然后可以得到目录中有多少文件,并将其存储在变量m中。
- 代码创建一个m行1024列的训练矩阵,该矩阵的每行数据存储一个图像。我们可以从文件名中解析出分类数字。该目录下的文件按照规则命名。
- 然后我们可以将类代码存储在hwLabels向量中,使用前面讨论的img2vector函数载入图像。
- 在下一步中,我们对testDigits目录中的文件执行相似的操作,不同之处是我们并不将这个目录下的文件载入矩阵中,而是使用classify0()函数测试该目录下的每个文件。
进行函数运行测试,可以看到错误率为0.010571。
该算法需要为每个测试向量做2000次距离计算,每个距离计算包括了1024个维度浮点运算,总共要执行900次,算法执行效率并不高。此外,我们还需要为测试向量准备2MB的存储空间。
2.4 小结
k-近邻算法是分类数据最简单最有效的算法,本章通过两个例子讲述了如何使用k-近邻算法构造分类器。k-近邻算法是基于实例的学习,使用算法时我们必须有接近实际数据的训练样本数据。k-近邻算法必须保存全部数据集,如果训练数据集的很大,必须使用大量的存储空间。此外,由于必须对数据集中的每个数据计算距离值,实际使用时可能非常耗时。
k-近邻算法的另一个缺陷是它无法给出任何数据的基础结构信息,因此我们也无法知晓平均实例样本和典型实例样本具有什么特征。