《机器学习实战》——第2章 k-近邻算法

目录

2.1 概述

2.1.1 准备:使用Python导入数据

2.1.2 从文本文件中解析数据

2.2 示例:使用k-近邻算法改进约会网站的配对效果

2.2.1 准备数据:从文本文件中解析数据

2.2.2 分析数据:使用Matplotlib创建散点图

2.2.3 准备数据:归一化数值

​编辑 

2.2.4 测试算法:作为完整程序验证分类器

2.2.5 使用算法:构建完整可用系统

2.3 示例:手写识别系统

2.3.1 准备数据:将图像转换为测试向量

2.3.2 测试算法:使用k-近邻算法识别手写数字

2.4 小结


2.1 概述

优点:精度高、对异常值不敏感、无数据输入假定。
缺点:计算复杂度高、空间复杂度高。
适用数据范围:数值型和标称型。

一般流程:

  1. 收集数据:可以用任何方法。
  2. 准备数据:距离计算所需要的数据,最好是结构化的数据格式。
  3. 分析数据:可以使用任何方法。
  4. 训练算法:不适用于k-近邻算法。
  5. 测试算法:计算错误率。
  6. 使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理。

2.1.1 准备:使用Python导入数据

创建一个kNN.py文件,添加下面的代码:

from numpy import *
import operator

def createDataset () :
    group = array ( [ [1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = [ 'A','A','B','B' ]
    return group,labels

进入python环境,在控制台输入

>>> import kNN
>>> group,labels = kNN.createDataset()
>>> group
>>> labels

可得到如下结果:

2.1.2 从文本文件中解析数据

k-近邻算法伪代码和实际Python代码:

对未知类别属性的数据集中的每个点依次执行以下操作:

  1. 计算已知类别数据集中的点与当前点之间的距离;
  2. 按照距离递增次序排序;
  3. 选取与当前点距离最小的k个点;
  4. 确定前k个点所在类别的出现频率;
  5. 返回前k个点出现频率最高的类别作为当前点的预测分类。
def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]
    diffMat = tile(inX, (dataSetSize,1)) - dataSet
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)
    distances = sqDistances**0.5
    sortedDistIndicies = distances.argsort()
    classCount={}
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
    sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

欧式距离公式计算两向量点间距离:

d=\sqrt{\left(x A_{0}-x B_{0}\right)^{2}+\left(x A_{1}-x B_{1}\right)^{2}}

预测数据所在分类:

kNN.classify0([0,0],group,labels,3)

改变[0,0]值,可以得到不同的结果。

2.2 示例:使用k-近邻算法改进约会网站的配对效果

2.2.1 准备数据:从文本文件中解析数据

添加下面的代码到kNN.py中:

def file2matrix(filename):
    fr = open(filename)
    numberOfLines = len(fr.readlines())  # get the number of lines in the file
    returnMat = zeros((numberOfLines, 3))  # prepare matrix to return
    classLabelVector = []  # prepare labels return

    index = 0
    for line in fr.readlines():
        line = line.strip()
        listFromLine = line.split('\t')
        returnMat[index, :] = listFromLine[0:3]
        classLabelVector.append(int(listFromLine[-1]))
        index += 1
    return returnMat, classLabelVector
  1. 打开文件,得到文件行数。
  2. 创建以零填充的矩阵NumPy。
  3. 循环处理文件中每行数据。

输入下面的命令:

import imp
imp.reload(kNN)
datingDataMat , datingLabels = kNN.file2matrix ( 'G:\\machinelearninginaction\\machinelearninginaction\\Ch02\\datingTestSet.txt ')

因为我们更新了kNN.py,所以需要重新加载以保证新的内容生效。

2.2.2 分析数据:使用Matplotlib创建散点图

import kNN
import matplotlib
import matplotlib.pyplot as plt
datingDataMat,datingLabels = kNN.file2matrix('datingTestSet.txt')
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,1],datingDataMat[:,2])
plt.show()

散点图使用了读取矩阵的第二、第三列数据,分别表示特征值“玩视频游戏所耗时间百分比”和“每周所消费的冰淇淋公升数”。

修改一部分代码,使得到的散点图更具有可读性:

import kNN
from numpy import array
import matplotlib
import matplotlib.pyplot as plt
datingDataMat,datingLabels = kNN.file2matrix('datingTestSet.txt')
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,1],datingDataMat[:,2],15.0*array(datingLabels), 15.0*array(datingLabels))
plt.show()

2.2.3 准备数据:归一化数值

 

在处理不同取值范围的特征值时,通常采用方法是将数值归一化,如将取值范围处理为0到1或者-1到1之间。

添加下面的代码到kNN.py中,该函数可以自动将数字特征值转化为0到1的区间。

def autoNorm(dataSet):
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    ranges = maxVals - minVals
    normDataSet = zeros(shape(dataSet))
    m = dataSet.shape[0]
    normDataSet = dataSet - tile(minVals, (m,1))
    normDataSet = normDataSet/tile(ranges, (m,1))   #element wise divide
    return normDataSet, ranges, minVals

我们将每列最小值放在变量minVals中,最大值放在变量maxVals中,其中dataSet.min(0)中的参数0使得函数可以从列中选取最小值,而不是选取当前行的最小值。然后,函数计算可能的取值范围,并创建新的返回矩阵。

import kNN
from numpy import array
import matplotlib
import matplotlib.pyplot as plt
datingDataMat,datingLabels = kNN.file2matrix('datingTestSet.txt')
normMat, ranges, minVals = kNN.autoNorm(datingDataMat)
print(normMat)

2.2.4 测试算法:作为完整程序验证分类器

为测试分类器效果,在kNN.py文件中创建datingClassTest函数:

def datingClassTest():
    hoRatio = 0.50      #hold out 10%
    #将文件中读取数据转换为归一化特征值
    datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')
    normMat, ranges, minVals = autoNorm(datingDataMat)
    m = normMat.shape[0]
    numTestVecs = int(m*hoRatio)
    errorCount = 0.0
    for i in range(numTestVecs):
        classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
        print ("the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i]))
        if (classifierResult != datingLabels[i]): errorCount += 1.0
    print ("the total error rate is: %f" % (errorCount/float(numTestVecs)))
    print (errorCount)

函数首先使用了file2matrix和autoNorm ()函数从文件中读取数据并将其转换为归一化特征值。接着计算测试向量的数量,此步决定了normMat向量中哪些数据用于测试,哪些数据用于分类器的训练样本;然后将这两部分数据输入到原始kNN分类器函数classify0。最后,函数计算错误率并输出结果。

import kNN
from numpy import array
import matplotlib
import matplotlib.pyplot as plt
datingDataMat,datingLabels = kNN.file2matrix('datingTestSet.txt')
normMat, ranges, minVals = kNN.autoNorm(datingDataMat)
test1 = kNN.datingClassTest()
print(test1)

该数据集错误率为6.6%。改变函数中变量hoRatio和变量k的值,错误率也会发生变化。

2.2.5 使用算法:构建完整可用系统

添加下列代码到kNN.py中:

def classifyPerson () :
    resultList = [ 'not at all ' , 'in sma1l doses', 'in large doses']
    percentTats = float(input ("percentage of time spent playing video games?" ) )
    ffMiles = float(input ( "freguent flier miles earned per year?") )
    iceCream = float(input ( "liters of ice cream consumed per year?" ) )
    datingDataMat , datingLabels = file2matrix ( 'datingTestset.txt ' )
    normMat , ranges, minvals = autoNorm (datingDataMat)
    inArr = array( [ffMiles, percentTats, iceCream] )
    classifierResult = classify0 ( (inArr-minvals) / ranges , normMat , datingLabels, 3 )
    print("You will probably like this person: ",resultList [classifierResult - 1 ])

2.3 示例:手写识别系统

2.3.1 准备数据:将图像转换为测试向量

添加下列代码到kNN.py,将图像转换为向量:

def img2vector(filename):
    returnVect = zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect

测试函数功能:

import kNN
from numpy import array
import matplotlib
import matplotlib.pyplot as plt
testvector = kNN.img2vector('testDigits/0_13.txt')
test1 = testvector[0,0:31]
test2 = testvector[0,32:63]
print(test1)
print(test2)

2.3.2 测试算法:使用k-近邻算法识别手写数字

将下列代码加入kNN.py中,主要功能是从os模块中导入函数listdir,它可以列出给定目录的文件名:

def handwritingClassTest():
    hwLabels = []
    trainingFileList = listdir('trainingDigits')           #load the training set
    m = len(trainingFileList)
    trainingMat = zeros((m,1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]
        fileStr = fileNameStr.split('.')[0]     #take off .txt
        classNumStr = int(fileStr.split('_')[0])
        hwLabels.append(classNumStr)
        trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
    testFileList = listdir('testDigits')        #iterate through the test set
    errorCount = 0.0
    mTest = len(testFileList)
    for i in range(mTest):
        fileNameStr = testFileList[i]
        fileStr = fileNameStr.split('.')[0]     #take off .txt
        classNumStr = int(fileStr.split('_')[0])
        vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
        classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
        print("the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr))
        if (classifierResult != classNumStr): errorCount += 1.0
    print("\nthe total number of errors is: %d" % errorCount)
    print("\nthe total error rate is: %f" % (errorCount/float(mTest)))
  1. 将trainingDigits目录的文件内容存储在列表中,然后可以得到目录中有多少文件,并将其存储在变量m中。
  2. 代码创建一个m行1024列的训练矩阵,该矩阵的每行数据存储一个图像。我们可以从文件名中解析出分类数字。该目录下的文件按照规则命名。
  3. 然后我们可以将类代码存储在hwLabels向量中,使用前面讨论的img2vector函数载入图像。
  4. 在下一步中,我们对testDigits目录中的文件执行相似的操作,不同之处是我们并不将这个目录下的文件载入矩阵中,而是使用classify0()函数测试该目录下的每个文件。

进行函数运行测试,可以看到错误率为0.010571。

该算法需要为每个测试向量做2000次距离计算,每个距离计算包括了1024个维度浮点运算,总共要执行900次,算法执行效率并不高。此外,我们还需要为测试向量准备2MB的存储空间。

2.4 小结

k-近邻算法是分类数据最简单最有效的算法,本章通过两个例子讲述了如何使用k-近邻算法构造分类器。k-近邻算法是基于实例的学习,使用算法时我们必须有接近实际数据的训练样本数据。k-近邻算法必须保存全部数据集,如果训练数据集的很大,必须使用大量的存储空间。此外,由于必须对数据集中的每个数据计算距离值,实际使用时可能非常耗时。

k-近邻算法的另一个缺陷是它无法给出任何数据的基础结构信息,因此我们也无法知晓平均实例样本和典型实例样本具有什么特征。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值