图2

二、已知一个有向图如下图所示,试给出图的邻接矩阵和邻接表存储示意图(画图,分别用矩阵和数组链表图表示),并编程分别实现该图的邻接矩阵表示和邻接表表示,要求编写两种表示方法的存储结构、相关基本操作,并在主函数中创建该图。

​ [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pUltTK0z-1612100075928)(图2.assets/clip_image002.jpg)]

有向图的邻接矩阵表示
#include <iostream>
#define maxValue max
#define E 50
#define V 10
using namespace std;

typedef char V_data;//存储数据类型
typedef struct{
	V_data vexlist[V];//顶点集
	int edge[E][E];//矩阵表
	int n,e;//矩阵的边数,顶点数目
}MTGraph;

void CreateMGraph(MTGraph *G){
	int i,j;
	//输入图的边数和点数
	cout<<"please cin the mount of point and edge:";
	cin>>G->n;
	cin>>G->e;
	//输入顶点信息
	cout<<"please cin the information of each point:";
	for(i=0;i<G->n;i++){
		cin>>G->vexlist[i];
	}
	//邻接矩阵初始化
	for(i=0;i<G->n;i++){
		for(j=0;j<G->n;j++){
			G->edge[i][j]=0;
		}
	}
	//输入图中边的节点(i,j),此处权值为1,这里和无向图不一样 
	cout<<"please cin position_info of each point:";
	for(int k=0;k<G->e;k++) {
		cin>>i;
		cin>>j;
		G->edge[i-1][j-1] =1;
	}
}

MTGraph NewNode(MTGraph *G,char x){

	G->vexlist[G->n] =x;
	for(int i=0;i<=G->n;i++){
		G->edge[G->n][i]=0;
		G->edge[i][G->n]=0;
	}

	++G->n;
	return *G;
}

void delNode(MTGraph *G,char x){
	//遍历点的数据,如有有执行删除操作
	for(int i=0;i<G->n;i++){
		if(G->vexlist[i] == x){
			cout<<"find "<<x<<endl;
			//删除顶点集
			for(int j=i;j<G->n-1;j++){
				G->vexlist[j] =G->vexlist[j+1];
			}
			G->vexlist[G->n-1] =0;
			cout<<"already del point! "<<x<<endl;
			//删除边集
			for(int ins=i;ins<G->n;ins++){
				if(ins==G->n-1){
					for(int k=0;k<G->n;k++){
						G->edge[ins][k] =0;
						G->edge[k][ins] =0;
					}
				}
				for(int k=0;k<G->n;k++){
					G->edge[ins][k] =G->edge[ins+1][k];
					G->edge[k][ins] =G->edge[k][ins+1];
				}
				G->edge[ins][ins]=G->edge[ins+1][ins+1];
			}
			//点的数量减一
			--G->n;
			break;
		}
		if(i=G->n)
			cout<<"not find "<<x<<endl;
	}

}

void setSucc(MTGraph *G,char x1,char x2){
	int i,j;
	for(int k=0;k<G->n;k++){
		if(G->vexlist[k] ==x1){
			i=k;
		}
		if(G->vexlist[k] ==x2){
			j=k;
		}
	}
	G->edge[i][j] =1;//有向图,建立一条边 
}

void delSucc(MTGraph *G,char x1,char x2){
	int i,j;
	for(int k=0;k<G->n;k++){
		if(G->vexlist[k] ==x1){
			i=k;
		}
		if(G->vexlist[k] ==x2){
			j=k;
		}
	}
	G->edge[i][j] =0;
}

void print(MTGraph *G){
	cout<<"all information of the graph:\n  ";
	int i,j;

	for(i=0;i<G->n;i++){
		cout<<G->vexlist[i]<<" ";
	}
	cout<<endl;
	for(i=0;i<G->n;i++){
		cout<<G->vexlist[i]<<" ";
		for(j=0;j<G->n;j++){
			cout<<G->edge[i][j]<<" ";
		}
		cout<<endl;
	}
}
int main(){
	MTGraph *G1 =new MTGraph();
	CreateMGraph(G1);
	print(G1);

	cout<<"add element 8:\n";
	NewNode(G1,'8');
	print(G1);

	cout<<"delete element 1:\n";
	delNode(G1,'1');
	print(G1);

	cout<<"add edge between 2 and 6\n";
	setSucc(G1,'2','8');
	print(G1);
	return 0;
}
有向图的邻接表表示
#include <iostream>
using namespace std;
#define NumVertices 11 		//顶点个数

typedef char VertexData; 	//顶点数据类型
typedef int EdgeData; 		//边上权值类型

typedef struct node { 		//边表结点
	int adjvex; 			//邻接点域(下标)
	//EdgeData cost; 		//边上的权值
	struct node *next; 		//下一边链接指针
} EdgeNode;

typedef struct { 			//顶点表结点
	VertexData vertex; 		//顶点数据域
	EdgeNode * firstedge; 		//边链表头指针
} VertexNode;

typedef struct { 			//图的邻接表
	VertexNode vexlist [NumVertices];
	int n, e; 			//图中当前的顶点个数与边数
} AdjGraph;

void CreateGraph (AdjGraph *G) {
	cout<<"输入顶点个数和边数:";
	cin >> G->n >> G->e; 	//1.输入顶点个数和边数
	int i;
	int head,tail;

	cout<<"输入顶点信息:";
	for ( i = 1; i <= G->n; i++) { 	//2.建立顶点表
		cin >> G->vexlist[i].vertex; 	//2.1输入顶点信息
		G->vexlist[i].firstedge = NULL;
	} //2.2边表置为空表

	//有向图和无向图不同
	cout<<"逐条边输入,建立边表:\n";
	for ( i = 1; i <= G->e; i++) { 	//3.逐条边输入,建立边表
		cin >> tail >> head; 	//3.1输入(变量说明省了)
		EdgeNode * p = new EdgeNode; 	//3.2建立边结点
		p->adjvex = head;
		p->next = G->vexlist[tail].firstedge; 	//3.4链入第tail 号链表的前端
		G->vexlist[tail].firstedge = p;

	}

} //时间复杂度:O(2e+n)

void print(AdjGraph *G){
	for(int i=1;i<=G->n;i++){
		cout<<G->vexlist[i].vertex<<"-->";
        EdgeNode *temp =G->vexlist[i].firstedge;
		while(temp!=NULL){
			
			cout<<temp->adjvex<<"-->";
			//G->vexlist[i].firstedge =G->vexlist[i].firstedge->next;
			temp=temp->next;
		}
		cout<<"NULL\n";
	}
}
int main(){
	AdjGraph *g =new AdjGraph();
	CreateGraph(g);
	print(g);

	return 0;
}
1.下列哪一种邻接矩阵是对称矩阵?( ) A.有向图 B.无向 C.AOV网 D.AOE网 2.在边表示活动的AOE网中,关键活动的最迟开始时间( ) 最早开始时间。 A.> B.= D.= 3.带权有向图G用邻接矩阵A存储,则顶点i的入度等于A中( ) 。 A.第i行非∞的元素之和 B.第i列非∞的元素之和 C.第i行非∞且非0的元素个数 D.第i列非∞且非0的元素个数 4.在一个无向中,所有顶点的度数之和等于所有边数的( ) 倍。 A.1/2 B. 1 C. 2 D. 4 5.对于一个具有n个顶点的无向,若采用邻接矩阵存储,则该矩阵的大小是(D) A.n B.(n-1)2 C.n-1 D.n2 6. 如下有关拓扑序列的叙述,( ) 不对。 A. 拓扑序列包含了有向图的全部顶点 B. 有向有环一定没有拓扑序列 C. 有向无环不一定有拓扑序列 D. 拓扑序列不一定唯一 7. 对于描述工程的AOE网,( ) 说法正确。 A. 网中唯一的出度为零的顶点,称为源点 B. 网中唯一的入度为零的顶点,称为汇点 C. 关键路径是源点到汇点的最短路径 D. 关键路径可能有多条 8. 最小生成树指的是( ) 。 A. 由连通网所得到的边数最少的生成树 B. 由连通网所得到的顶点数相对较少的生成树 C. 连通网中所有生成树中权值之和为最小的成生树 D. 连通网的极小连通子 9.一个有向图,共有n条弧,则所有顶点的度的总和为( ) 。 A.2n B.n C.n-1 D.n/2 二、填空题(每空3分,共9分)。 1.有n个顶点的连通至少有___条边。有n个顶点的无向至多有 条边。 2. 的广度优先遍历算法中用到辅助队列,每个顶点最多进队 次。 3.在一个具有n个顶点的有向完全中包含有 条边。 三、综合题(共23分)(答案可以在纸上笔画然后拍照贴到文档的方式)。 1. (共7分)无向网如下: (1) 给出所示网的邻接矩阵表示(3分): (2) 画出最小生成树(4分): 2 .(共8分)已知一个连通所示给出邻接矩阵和邻接链表存储示意。 (1) 邻接矩阵存储示意为(4分): (2) 邻接链表存储示意为(4分): 3. (共8分)如所示的带权无向,请用克鲁斯卡尔算法给出最小生成树的求解过程。 用克鲁斯卡尔算法求最小生成树的过程为:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值