排序——归并排序

Vol7

排序:笔试和面试的重点.1.算法描述;2.实现;3.效率分析(时间复杂度,空间复杂度,稳定性)
稳定性:针对关键字相同的数据,排序前如果A在A"的前面,排序后还能保证A在A"的前面,则算法稳定,否则不稳定
稳定性判断依据:有没有跳跃的交换数据,没有则稳定

7.归并排序

代码思想:将两段有序的数据合并成一段有序的数据,直到所有的数据有序
时间复杂度:O(nlogn)
空间复杂度:O(n)
稳定性:稳定(没有交换)

//合并
void Merge(int* arr, int* tmpArr, int left, int mid, int right)
{
	//标记左半区第一个未排序的元素下标
	int l_pos = left;
	//标记右半区第一个未排序的元素下标
	int r_pos = mid + 1;
	//临时数组的下标
	int pos = left;
	//合并
	while(l_pos <= mid && r_pos <= rigth)
	{
		if (arr[l_pos] < arr[r_pos])
		{
			tmpArr[pos++] = arr[l_pos++];
		}
		else
		{
			tmpArr[pos++] = arr[r_pos++];
		}
	}

	//合并左半区剩余的元素
	while (l_pos <= mid)
	{
		tmpArr[pos++] = arr[l_pos++];
	}
	//合并右半区剩余的元素
	while (r_pos <= right)
	{
		tmpArr[pos++] = arr[r_pos++];
	}

	//临时数组复制回原来的数组
	while (left <= right)
	{
		arr[left] = tmpArr[left];
		left++;
	}
}


static void msort(int *arr, int* tmpArr,int left,int right)//O(n),O(n)
{
	if (left < right)//至少有两个元素
	{
		//找中间点
		int mid = (left + right) / 2;

		//递归划分左半区域
		msort(arr, tmpArr, left, mid);
		//递归划分右半区域
		msort(arr, tmpArr, mid + 1, right);

		//合并
		Merge(arr, tmpArr, left, mid, right);
	}
}

//归并排序入口
void MergeSort(int *arr,int len)//O(nlogn),O(n),稳定(没有交换)
{
	//分配一个辅助数组
	int* tmpArr = (int*)malloc(len * sizeof(inrt));
	if (tmpArr)
	{
		msort(arr, tmpArr, 0,len-1);
		free(tmpArr);
	}
	else
	{
		printf("error:failed to allocate memory");
	}
}```

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

c-continue;

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值