1. 事件
Ω, 必然事件所有样本集合
Φ, 不可能事件所有样本集合
A ⊆ B : A发生必然导致B发生, 则称A是B的子事件, 或称B包含A
A = B : A发生B也发生, A不发生B也不发生,则称A等于B
和事件:
A1,A2,A3,A4,,,,,,An事件中至少有个发生, 这个称之为A1,A2,A3,A4,,,,,,An的和事件
记做∪,和事件有如下规律
A∪ B = B∪A
A∪(B ∪ C) = (A∪B)∪C
A∪A = A
A∪Ω = Ω
A∪Φ = Φ
如果 A ⊆ B 则A∪B = B
积事件:
积事件: A1,A2,A3,A4,,,,,,An事件中同时发生,这个称之为A1,A2,A3,A4,,,,,,An的积事件
记做∩, 积事件有如下规律
A∩B = B∩A
A∩(B∩C)= (A∩B)∩C
A∩A = A
A∩Ω= A
A∩Φ=Φ
如果 A ⊆B 则A∩B = B
差事件:
A发生且B不发生,称作A与B的差事件,记做A-B
差事件有如下规律
A-A=Φ
A-Φ=A
A-Ω=Φ
A∩(B-C)=(A∩B)-(A∩C)
A-(B∪C)=(A-B)∩(A-C)
A∩(B-A)=Φ
逆事件:
如果Ω是样本空间,A是一个事件,则Ω-A记做A的逆事件或对立事件记做
互斥事件:
如果A与B不可能同时发生,则A和B是互斥事件
概率:
在条件不变的情况下,重复n次试验, A发生m次, 如果当n很大的时候,m/n 稳定的在p值附近摆动,且随着n增大,这种摆动幅度越小
则称数值p为事件A的概率记做P(A)= p
概率为0的时间不一定是不可能事件, 概率为1的事件不一定是必然事件。
事件A发生的条件下事件B的条件概率记为:P(B|A) = P(AB)/P(A)
事件A与事件B相互独立记为:P(AB)=P(A)P(B)
随机变量及其分布
数学公式果然还是比较难打,不记录笔记了。。。