数据结构与算法(5)查找算法

本文详细介绍了Java中几种常见的查找算法,包括线性查找、二分查找、插值查找和斐波那契查找。线性查找适用于小规模或无序数组,而二分查找则要求数组有序。插值查找在数据分布均匀时效率较高,斐波那契查找利用了黄金分割点优化查找过程。对于有序数组,二分查找和斐波那契查找提供了更高效的解决方案,尤其在处理大量数据时。文章还提供了具体实现代码以帮助理解这些查找算法的工作原理。
摘要由CSDN通过智能技术生成

查找算法

1、查找算法介绍

​ 在java中,常用的查找有四种:

  • 顺序(线性)查找
  • 二分查找/折半查找
  • 插值查找
  • 斐波那契查找

2、线性查找算法

​ 有一个数列: {1,8, 10, 89, 1000, 1234} ,判断数列中是否包含此名称【顺序查找】

​ 要求: 如果找到了,就提示找到,并给出下标值

public class SeqSearch {
    public static void main(String[] args) {
        int arr[] = { 1, 9, 11, -1, 34, 89 };// 没有顺序的数组
        int index = seqSearch(arr, -11);
        if(index == -1) {
            System.out.println("没有找到到");
        } else {
            System.out.println("找到,下标为=" + index);
        }
    }
    /**
     * 这里我们实现的线性查找是找到一个满足条件的值,就返回
     * @param arr
     * @param value
     * @return
     */
    public static int seqSearch(int[] arr, int value) {
        // 线性查找是逐一比对,发现有相同值,就返回下标
        for (int i = 0; i < arr.length; i++) {
            if(arr[i] == value) {
                return i;
            }
        }
        return -1;
    }
}

3、二分查找算法

(1)二分查找思路

在这里插入图片描述

(2)二分查找代码实现

【说明】:增加了找到所有的满足条件的元素下标
【课后思考题】: {1,8, 10, 89, 1000, 1000,1234} 当一个有序数组中,有多个相同的数值时,如何将所有的数值都查找到,比如这里的 1000

import java.util.ArrayList;
import java.util.List;
//注意:使用二分查找的前提是 该数组是有序的.
public class BinarySearch {
    public static void main(String[] args) {
        int arr[] = { 1, 8, 10, 89,1000,1000, 1234 };
        //
        // int resIndex = binarySearch(arr, 0, arr.length - 1, 1000);
        // System.out.println("resIndex=" + resIndex);
        List<Integer> resIndexList = binarySearch2(arr, 0, arr.length - 1, 1000);
        System.out.println("resIndexList=" + resIndexList);
    }

    // 二分查找算法
    /**
     *
     * @param arr
     * 数组
     * @param left
     * 左边的索引
     * @param right
     * 右边的索引
     * @param findVal
     * 要查找的值
     * @return 如果找到就返回下标,如果没有找到,就返回 -1
     */
    public static int binarySearch(int[] arr, int left, int right, int findVal) {
        // 当 left > right 时,说明递归整个数组,但是没有找到
        if (left > right) {
            return -1;
        }
        int mid = (left + right) / 2;
        int midVal = arr[mid];
        if (findVal > midVal) { // 向 右递归
            return binarySearch(arr, mid + 1, right, findVal);
        } else if (findVal < midVal) { // 向左递归
            return binarySearch(arr, left, mid - 1, findVal);
        } else {
            return mid;
        }
    }

    //完成一个课后思考题:
    /*
     * 课后思考题: {1,8, 10, 89, 1000, 1000,1234} 当一个有序数组中,
     * 有多个相同的数值时,如何将所有的数值都查找到,比如这里的1000
     *
     * 思路分析
     * 1. 在找到 mid 索引值,不要马上返回
     * 2. 向 mid 索引值的左边扫描,将所有满足 1000, 的元素的下标,加入到集合 ArrayList
     * 3. 向 mid 索引值的右边扫描,将所有满足 1000, 的元素的下标,加入到集合 ArrayList
     * 4. 将 Arraylist 返回
 */

    public static List<Integer> binarySearch2(int[] arr, int left, int right, int findVal) {
        //当left > right时,说明递归整个数组,但是没有找到
        if (left > right) {
            return new ArrayList<Integer>();
        }
        int mid = (left + right) / 2;
        int midVal = arr[mid];
        if (findVal > midVal) { // 向 右递归
            return binarySearch2(arr, mid + 1, right, findVal);
        } else if (findVal < midVal) { // 向左递归
            return binarySearch2(arr, left, mid - 1, findVal);
        } else {

            // * 思路分析
            // * 1.在找到mid索引值,不要马上返回
            // * 2.向mid索引值的左边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
            // * 3.向mid索引值的右边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
            // * 4.将Arraylist返回
            List<Integer> resIndexlist = new ArrayList<Integer>();
            //向mid索引值的左边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
            int temp = mid - 1;
            while(true) {
                if (temp < 0 || arr[temp] != findVal) {//退出
                    break;
                }
                //否则将temp放入到resIndexlist
                resIndexlist.add(temp);
                temp -= 1; //temp 左移
            }
            resIndexlist.add(mid); //
            //向mid索引值的右边扫描,将所有满足1000的元素的下标,加入到集合 ArrayList
            temp = mid + 1;
            while(true) {
                if (temp > arr.length - 1 || arr[temp] != findVal) {//退出
                    break;
                }
                //否则将temp放入到resIndexlist
                resIndexlist.add(temp);
                temp += 1; //temp 右移
            }
            return resIndexlist;
        }
    }
}

4、插值查找算法

  • 原理介绍:

    插值查找算法类似于二分查找,不同的是插值查找每次从自适应mid处开始查找

  • 将折半查找中的求mid索引的公式, low表示左边索引left, high表示右边索引right.
    key就是前面讲的findVal

在这里插入图片描述

  • int mid = low + (high - low) * (key - arr[low]) / (arr[high] - arr[low]) ;/插值索引
    对应前面的代码公式:
    int mid = left + (right – left) * (findVal – arr[left]) / (arr[right] – arr[left])
  • 【举例说明】插值查找算法

在这里插入图片描述

(1)插值查找应用案例

​ 对一个有序数组进行插值查找 {1,8, 10, 89, 1000, 1234} ,输入一个数看看该数组是否存在此数,并且求出下标,如果没有就提示"没有这个数"

import java.util.Arrays;
public class InsertValueSearch{
    public static void main(String[] args) {
        // int [] arr = new int[100];
        // for(int i = 0; i < 100; i++) {
        // arr[i] = i + 1;
        
        int arr[] = {1,8,10,89,1000,1000,1234};
        int index = insertValueSearch(arr, 0, arr.length - 1, 1234);
        
        //int index = binarySearch(arr, 0, arr.length, 1);
        System.out.println("index = " + index);
        //System.out.println(Arrays.toString(arr));
    }
    
    public static int binarySearch(int[] arr, int left, int right, int findVal) {
        System.out.println("二分查找被调用~");
        // 当left > right 时,说明递归整个数组,但是没有找到
        if (left > right) {
            return -1;
        }
        int mid = (left + right) / 2;
        int midVal = arr[mid];
        if (findVal > midVal) { // 向 右递归
            return binarySearch(arr, mid + 1, right, findVal);
        } else if (findVal < midVal) { // 向左递归
            return binarySearch(arr, left, mid - 1, findVal);
        } else {
            return mid;
        }
    }
    
    //编写插值查找算法
    //说明:插值查找算法,也要求数组是有序的
    /**
     *
     * @param arr 数组
     * @param left 左边索引
     * @param right 右边索引
     * @param findVal 查找值
     * @return 如果找到,就返回对应的下标,如果没有找到,返回-1
     */
    public static int insertValueSearch(int[] arr, int left, int right, int findVal) {
        System.out.println("插值查找次数~~");
        //注意:findVal < arr[0] 和 findVal > arr[arr.length - 1] 必须需要
        //否则我们得到的 mid 可能越界
        if (left > right || findVal < arr[0] || findVal > arr[arr.length - 1]) {
            return -1;
        }
        // 求出 mid, 自适应
        int mid =left+(right-left) * (findVal-arr[left])/(arr[right]-arr[left]);
        int midVal = arr[mid];
        if (findVal > midVal) { // 说明应该向右边递归
            return insertValueSearch(arr, mid + 1, right, findVal);
        } else if (findVal < midVal) { // 说明向左递归查找
            return insertValueSearch(arr, left, mid - 1, findVal);
        } else {
            return mid;
        }
    }
}
(2)插值查找注意事项
  • 对于数据量较大,关键字分布比较均匀的查找表来说,采用插值查找, 速度较快
  • 关键字分布不均匀的情况下,该方法不一定比折半查找要好

5、斐波那契(黄金分割法)查找算法

(1)基本介绍
  • 黄金分割点是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。取其前三位数字的近似值是 0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个神奇的数字,会带来意向不大的效果。
  • 斐波那契数列 {1, 1, 2, 3, 5, 8, 13, 21, 34, 55} 发现斐波那契数列的两个相邻数的比例,无限接近黄金分割值0.618
(2)原理

​ 斐波那契查找原理与前两种相似,仅仅改变了中间结点(mid)的位置,mid不再是中间或插值得到,而是位于黄金分割点附近,即 mid=low+F(k-1)-1(F代表斐波那契数列),如下图所示:

在这里插入图片描述

【对F(k-1)-1 的理解】

  • 由斐波那契数列 F[k]=F[k-1]+F[k-2] 的性质,可以得到 (F[k]-1)=(F[k-1]-1)+(F[k-2]-1)+1 。该式说明:只要顺序表的长度为 F[k]-1,则可以将该表分成长度为 F[k-1]-1 和 F[k-2]-1 的两段,即如上图所示。从而中间位置为 mid=low+F(k-1)-1
  • 类似的,每一子段也可以用相同的方式分割,但顺序表长度 n 不一定刚好等于 F[k]-1,所以需要将原来的顺序表长度 n 增加至 F[k]-1。这里的 k 值只要能使得F[k]-1 恰好大于或等于 n 即可,由以下代码得到,顺序表长度增加后,新增的位置(从n+1到F[k]-1位置),都赋为n位置的值即可。
    while(n>fib(k)-1) k++;
(3)应用案例

​ 对一个 有序数组进行斐波那契查找 {1,8, 10, 89, 1000, 1234} ,输入一个数看看该数组是否存在此数,并且求出下标,如果没有就提示"没有这个数"。

import java.util.Arrays;
public class FibonacciSearch {
    public static int maxSize = 20;
    
    public static void main(String[] args) {
        int [] arr = {1,8, 10, 89, 1000, 1234};
        System.out.println("index=" + fibSearch(arr, 189));// 0
    }
    
    //因为后面我们 mid=low+F(k-1)-1,需要使用到斐波那契数列,因此我们需要先获取到一个斐波那契数列
    //非递归方法得到一个斐波那契数列
    public static int[] fib() {
        int[] f = new int[maxSize];
        f[0] = 1;
        f[1] = 1;
        for (int i = 2; i < maxSize; i++) {
            f[i] = f[i - 1] + f[i - 2];
        }
        return f;
    }
    
    //编写斐波那契查找算法
    //使用非递归的方式编写算法
    /**
     *
     * @param a 数组
     * @param key 我们需要查找的关键码(值)
     * @return 返回对应的下标,如果没有-1
     */
    public static int fibSearch(int[] a, int key) {
        int low = 0;
        int high = a.length - 1;
        int k = 0; //表示斐波那契分割数值的下标
        int mid = 0; //存放 mid 值
        int f[] = fib(); //获取到斐波那契数列
        //获取到斐波那契分割数值的下标
        while(high > f[k] - 1) {
            k++;
        }
        //因为f[k]值可能大于a的长度,因此我们需要使用Arrays类,构造一个新的数组,并指向temp[]
        //不足的部分会使用 0 填充
        int[] temp =Arrays.copyOf(a, f[k]);
        //实际上需求使用 a 数组最后的数填充 temp
        //举例:
        //temp = {1,8, 10, 89, 1000, 1234, 0, 0} => 
        // {1,8, 10, 89, 1000, 1234, 1234, 1234,}
        for(int i = high + 1; i < temp.length; i++) {
            temp[i] = a[high];
        }
        // 使用 while 来循环处理,找到我们的数 key
        while (low <= high) { // 只要这个条件满足,就可以找
            mid = low + f[k - 1] - 1;
            if(key < temp[mid]) { //我们应该继续向数组的前面查找(左边)
                high = mid - 1;
                //为甚是 k--
                //说明
                //1. 全部元素 = 前面的元素 + 后边元素
                //2. f[k] = f[k-1] + f[k-2]
                //因为 前面有 f[k-1]个元素,所以可以继续拆分 f[k-1] = f[k-2] + f[k-3]
                //即 在 f[k-1] 的前面继续查找 k--
                //即下次循环 mid = f[k-1-1]-1
                k--;
            } else if ( key > temp[mid]) { // 我们应该继续向数组的后面查找(右边)
                low = mid + 1;
                //为什么是 k -=2
                //说明
                //1. 全部元素 = 前面的元素 + 后边元素
                //2. f[k] = f[k-1] + f[k-2]
                //3. 因为后面我们有 f[k-2] 所以可以继续拆分 f[k-1] = f[k-3] + f[k-4]
                //4. 即在 f[k-2] 的前面进行查找 k -=2
                //5. 即下次循环 mid = f[k - 1 - 2] - 1
                k -= 2;
            } else { //找到
                //需要确定,返回的是哪个下标
                if(mid <= high) {
                    return mid;
                } else {
                    //因为temp扩容过,mid有可能超过原来的数组的high值。
                    return high;
                }
            }
        }
        return -1;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值