PyTorch Lightning 最简单的训练,推理,导出onnx

PyTorch Lightning 最简单的训练,推理,导出onnx

flyfish

import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from torch import nn
from torch.utils.data import DataLoader, TensorDataset

class SimpleModel(pl.LightningModule):
    def __init__(self, input_dim, output_dim):
        super(SimpleModel, self).__init__()
        self.save_hyperparameters()
        self.layer = nn.Linear(input_dim, output_dim)

    def forward(self, x):
        return self.layer(x)

    def training_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self(x)
        loss = F.mse_loss(y_hat, y)
        return loss

    def configure_optimizers(self):
        return torch.optim.Adam(self.parameters(), lr=0.001)

# 创建一些示例数据
input_dim = 10
output_dim = 1
X = torch.randn(100, input_dim)
y = torch.randn(100, output_dim)

# 创建 DataLoader
dataset = TensorDataset(X, y)
dataloader = DataLoader(dataset, batch_size=32)

# 初始化模型实例
model = SimpleModel(input_dim=input_dim, output_dim=output_dim)

# 初始化 PyTorch Lightning 的训练器
trainer = pl.Trainer(max_epochs=10)

# 训练模型
trainer.fit(model, dataloader)

# 保存模型检查点
checkpoint_path = 'model_checkpoint.ckpt'
trainer.save_checkpoint(checkpoint_path)

# 加载已保存的检查点,提供默认参数
model = SimpleModel.load_from_checkpoint(checkpoint_path, input_dim=input_dim, output_dim=output_dim)

# 设置模型为评估模式
model.eval()

# 创建示例输入
example_input = torch.randn(1, input_dim)

# 导出为 ONNX
onnx_path = 'model.onnx'
torch.onnx.export(
    model,                     # 要导出的模型
    example_input,             # 示例输入
    onnx_path,                 # ONNX 文件的路径
    input_names=["input"],     # 输入名
    output_names=["output"],   # 输出名
    dynamic_axes={             # 动态轴设置
        "input": {0: "batch_size"},
        "output": {0: "batch_size"}
    },
    opset_version=11           # ONNX opset 版本
)

print(f"Model exported to {onnx_path}")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二分掌柜的

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值