牛顿黏滞定律

在这里插入图片描述
牛顿黏滞定律描述了流体内部的剪切应力与速度梯度之间的关系。公式如下:
τ = η d v x d y \tau = \eta \frac{dv_x}{dy} τ=ηdydvx
其中:
τ \tau τ 是剪切应力(shear stress),单位是帕斯卡(Pa)或牛顿每平方米(N/m²)。
η \eta η 是动力黏度(dynamic viscosity),单位是帕·秒(Pa·s)或牛顿·秒每平方米(N·s/m²)。
d v x d y \frac{dv_x}{dy} dydvx 是速度梯度(velocity gradient),单位是每秒每米(s⁻¹)。
剪切应力 τ \tau τ 是作用在流体层之间的力(F)除以面积(A),即: τ = F A \tau = \frac{F}{A} τ=AF速度梯度 d v x d y \frac{dv_x}{dy} dydvx 表示流体速度 v x v_x vx 沿着垂直方向 y y y 的变化率。

应力

应力 是物体内部承受外力时产生的一种力。你可以把它想象成物体内部用来抵抗外部作用力的一种“抵抗力”。
用手拉橡皮筋时,橡皮筋内部就会产生应力来抵抗手的拉力。这种应力让橡皮筋不会轻易被拉断。

剪切应力

剪切应力 是一种特殊的应力类型,指的是作用在物体表面、平行于该表面的力引起的应力。
剪切应力就像是用手擦桌子时,手掌在桌面上施加的那种滑动的力,这种力是平行于桌面的,而不是垂直的。

速度梯度 d v x d y \frac{dv_x}{dy} dydvx

d v x d y \frac{dv_x}{dy} dydvx 表示的是流体速度 v x v_x vx 沿垂直方向 y y y 的变化率。
这个表达式是一个偏导数,表示在保持其他变量不变的情况下,速度 v x v_x vx y y y 变化的速率。它是一个偏导数,描述了在 y y y 方向上,速度 v x v_x vx 如何变化。
总结: d v x d y \frac{dv_x}{dy} dydvx 读作“速度梯度”,是流体力学中的一个重要概念,表示流体速度在垂直方向上的变化率。在牛顿黏滞定律中,它用来描述剪切应力与速度梯度之间的关系。
v x v_x vx :表示流体在 x x x 方向上的速度。
y y y :表示垂直于 x x x 方向的坐标。

基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二分掌柜的

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值