牛顿黏滞定律

在这里插入图片描述
牛顿黏滞定律描述了流体内部的剪切应力与速度梯度之间的关系。公式如下:
τ = η d v x d y \tau = \eta \frac{dv_x}{dy} τ=ηdydvx
其中:
τ \tau τ 是剪切应力(shear stress),单位是帕斯卡(Pa)或牛顿每平方米(N/m²)。
η \eta η 是动力黏度(dynamic viscosity),单位是帕·秒(Pa·s)或牛顿·秒每平方米(N·s/m²)。
d v x d y \frac{dv_x}{dy} dydvx 是速度梯度(velocity gradient),单位是每秒每米(s⁻¹)。
剪切应力 τ \tau τ 是作用在流体层之间的力(F)除以面积(A),即: τ = F A \tau = \frac{F}{A} τ=AF速度梯度 d v x d y \frac{dv_x}{dy} dydvx 表示流体速度 v x v_x vx 沿着垂直方向 y y y 的变化率。

应力

应力 是物体内部承受外力时产生的一种力。你可以把它想象成物体内部用来抵抗外部作用力的一种“抵抗力”。
用手拉橡皮筋时,橡皮筋内部就会产生应力来抵抗手的拉力。这种应力让橡皮筋不会轻易被拉断。

剪切应力

剪切应力 是一种特殊的应力类型,指的是作用在物体表面、平行于该表面的力引起的应力。
剪切应力就像是用手擦桌子时,手掌在桌面上施加的那种滑动的力,这种力是平行于桌面的,而不是垂直的。

速度梯度 d v x d y \frac{dv_x}{dy} dydvx

d v x d y \frac{dv_x}{dy} dydvx 表示的是流体速度 v x v_x vx 沿垂直方向 y y y 的变化率。
这个表达式是一个偏导数,表示在保持其他变量不变的情况下,速度 v x v_x vx y y y 变化的速率。它是一个偏导数,描述了在 y y y 方向上,速度 v x v_x vx 如何变化。
总结: d v x d y \frac{dv_x}{dy} dydvx 读作“速度梯度”,是流体力学中的一个重要概念,表示流体速度在垂直方向上的变化率。在牛顿黏滞定律中,它用来描述剪切应力与速度梯度之间的关系。
v x v_x vx :表示流体在 x x x 方向上的速度。
y y y :表示垂直于 x x x 方向的坐标。

内容概要:本文档是一份基于最新Java技术趋势的实操指南,涵盖微服务架构(Spring Cloud Alibaba)、响应式编程(Spring WebFlux + Reactor)、容器化与云原生(Docker + Kubernetes)、函数式编程与Java新特性、性能优化与调优以及单元测试与集成测试六大技术领域。针对每个领域,文档不仅列出了面试中的高频考点,还提供了详细的实操场景、具体实现步骤及示例代码。例如,在微服务架构中介绍了如何利用Nacos进行服务注册与发现、配置管理,以及使用Sentinel实现熔断限流;在响应式编程部分展示了响应式控制器开发、数据库访问和流处理的方法;对于容器化,则从Dockerfile编写到Kubernetes部署配置进行了讲解。 适合人群:具有一定的Java编程基础,尤其是正在准备面试或希望深入理解并掌握当前主流Java技术栈的研发人员。 使用场景及目标:①帮助求职者熟悉并能熟练运用微服务、响应式编程等现代Java开发技术栈应对面试;②指导开发者在实际项目中快速上手相关技术,提高开发效率和技术水平;③为那些想要深入了解Java新特性和最佳实践的程序员提供有价值的参考资料。 阅读建议:由于文档内容丰富且涉及多个方面,建议读者按照自身需求选择感兴趣的主题深入学习,同时结合实际项目进行练习,确保理论与实践相结合。对于每一个技术点,不仅要关注代码实现,更要理解背后的原理和应用场景,这样才能更好地掌握这些技能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二分掌柜的

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值