稠密(Dense)架构与稀疏(Sparse,以MoE为代表)架构的差异

稠密(Dense)架构与稀疏(Sparse,以MoE为代表)架构的差异

flyfish

各词的词性与含义
(1)Dense(形容词)
含义:表示 “密集的、稠密的”,描述事物在空间或数量上分布紧凑、数量多。

(2)sparse(形容词)
含义:表示 “稀疏的、稀少的”,与 “Dense” 语义完全相反,描述事物分布松散、数量少。

(3)sparsity(名词)
含义:是 “sparse” 的名词形式,指 “稀疏性”,表示 “稀疏的属性或状态”,而非形容词。
在这里插入图片描述

在这里插入图片描述

FFNN(Feedforward Neural Network,前馈神经网络)

FFNN(Feedforward Neural Network,前馈神经网络)是一种基础的神经网络架构

1. 定义与结构

“前馈”的本质:数据从「输入层」向「隐藏层」「输出层」单向传递,无循环或反馈连接(信息不会“回头”流动)。
层级组成

  • 输入层:接收原始特征(如图片像素值、文本的词向量表示);
  • 隐藏层(可包含多层):对前一层输出进行「加权求和 + 激活函数处理」,实现非线性变换(让网络能学习复杂模式);
  • 输出层:生成最终结果(如分类任务的“类别概率分布”、回归任务的“连续预测值”)。

2. 工作原理:“线性变换 + 非线性激活”

每个神经元(节点)的计算分两步:

  1. 线性变换:接收上一层所有神经元的输出,通过**权重矩阵(( W ))偏置(( b ))**做加权求和,公式为 ( z = xW + b )(( x ) 为输入);
  2. 非线性激活:用激活函数(如ReLU、Sigmoid、GeLU等)处理线性结果,引入“非线性能力”(否则多层网络会退化为单层线性模型)。

以Transformer中的经典FFN为例,计算式为:
FFN(x)=f(xW1+b1)W2+b2\text{FFN}(x) = f(xW_1 + b_1)W_2 + b_2FFN(x)=f(xW1+b1)W2+b2
(其中 fff 是激活函数,第一层将输入维度“扩展”,第二层再“还原”维度,实现特征的高效变换)

稠密(Dense)架构与稀疏(Sparse,以MoE为代表)架构的差异

Transformer解码器中稠密(Dense)架构与稀疏(Sparse,以MoE为代表)架构的差异,重点体现**前馈网络(FFNN)的设计变化

左侧:Dense模型的Decoder结构

这是传统稠密Transformer解码器的典型模块,流程为:

  1. Layer Norm(层归一化,稳定数据分布)→ 2. Masked Self-Attention(掩码自注意力,捕捉序列内的token关联)→ 3. 残差连接(+,避免信息在多层传递中丢失)→ 4. Layer Norm → 5. 单个FFNN(前馈神经网络) → 6. 残差连接 → 输出。

所有输入都会经过同一个FFNN处理,没有“选择性激活”——FFNN是“全局且唯一的”,所有参数全程参与计算(体现“稠密”的本质:全参数激活)。

右侧:Sparse模型的Decoder结构(MoE类改造)

变化是Replace the FFNN with many FFNNs each representing an expert 将单个FFNN 替换为多个FFNN(每个代表一个专家子网络),流程调整为:

  1. 前序步骤(Layer NormMasked Self-Attention、残差连接)与左侧一致;
  2. 注意力层输出后,不再进入“单个FFNN”,而是被路由到多个“专家FFNN”(图中为FFNN 1~4)
  3. 只有与当前输入最匹配的少数专家FFNN会被激活计算(未被选中的专家“休眠”,不消耗算力);
  4. 激活的专家FFNN输出经整合(残差连接)后,得到最终结果。

设计逻辑

从“全稠密计算”到“稀疏条件计算”的改造:

  • Dense架构:用单个FFNN处理所有任务,泛化性强但算力消耗大(全参数激活);
  • Sparse(MoE类)架构:用多个“专家FFNN”替代单个FFNN,通过“选择性激活专家”实现“稀疏计算”——既保留多任务能力,又大幅降低算力开销(仅少数专家工作)。

MoE 模型(Mixture of Experts,混合专家模型)
MoE 模型是一种稀疏条件计算架构,核心思想是 “分工与选择性激活”,由两大关键组件构成:
专家子网络(Expert Subnetworks):多个专业化的子模型(通常为 FFN 结构),每个 “专家” 被设计为专精于某一类任务或特征空间(如逻辑推理、文本生成、代码理解等);
门控网络(Gating Network):轻量级决策模块,负责分析输入并动态选择 “最匹配的少数专家子网络” 参与计算(未被选中的专家处于 “休眠” 状态,不消耗算力)。

流程对比

1. Dense模型的计算流程

输入序列(如自然语言文本)经分词(Tokenization)后,依次流经Transformer的编码器/解码器层:

  • 每层先通过自注意力(Self-Attention)捕捉序列内关联;
  • 随后进入全连接前馈网络(Dense-FFN),此时FFN的所有参数被激活,对注意力层输出的特征进行高维映射与变换;
  • 经层归一化(Layer Norm)与残差连接后,传递至下一层,最终生成输出。

简言之,Dense模型的计算是全参数串行激活的流程:输入 → 注意力层 → 全参数FFN → 层归一化&残差连接 → 下一层… → 输出。

2. MoE模型的计算流程

输入序列经分词后进入Transformer层,核心差异体现在FFN阶段:

  • 注意力层输出先传递至门控网络,门控网络通过可学习权重与激活函数(如Softmax、Noisy Top-k等),计算输入与每个专家子网络的“匹配分数”;
  • 根据匹配分数,仅选择Top-k个专家子网络(如k=2)进行激活,其余专家不参与计算;
  • 被激活的专家子网络对输入特征进行处理,各自输出中间结果;
  • 门控网络根据“匹配分数”对专家输出进行加权求和,再经层归一化与残差连接后传递至下一层。

简言之,MoE的计算是门控选专家→稀疏激活计算→加权整合的流程:输入 → 注意力层 → 门控网络选专家 → 少数专家FFN计算 → 加权整合 → 层归一化&残差连接 → 下一层… → 输出。

在这里插入图片描述
混合专家模型(Mixture of Experts, MoE)的架构
可从多层堆叠和“单MoE层内部逻辑两部分看

1. 整体结构:MoE层的“可堆叠性”

左侧显示 多个MoE层能像传统神经网络层一样“级联堆叠”,构建更深的模型。每一层都可根据输入动态选择专家,让信息在多层中逐步处理、提炼(类似普通神经网络的“层级特征提取”,但每层都有“动态选专家”的智能性)。

2. 单个MoE层的内部逻辑(右侧放大区域)

单个MoE层是核心,通过“门控选专家 → 专家计算 → 加权整合”的流程,实现“按需调用专家”的高效计算,包含三大关键组件:
在这里插入图片描述

(1)Gating Network(门控网络)

角色:“决策调度器”
功能:接收输入(下方粉色方块),计算“每个专家子网络与当前输入的匹配程度”,输出“匹配分数”(如图中 G(x)2G(x)_2G(x)2G(x)n−1G(x)_{n-1}G(x)n1 等)。
特点:是轻量级网络,参数少、计算快,负责“选谁来干活”。

(2)Expert Subnetworks(专家子网络)

角色:“专项执行者”
功能:每个“Expert”是专精于某类任务的子模型(比如有的擅长逻辑推理,有的擅长文本生成)。
特点:数量可灵活设置(图中为 Expert 1∼n\text{Expert } 1 \sim nExpert 1n),但每次仅激活少数专家(图中深色标注的 Expert 2\text{Expert } 2Expert 2Expert n−1\text{Expert } n-1Expert n1 是被选中的专家,其余专家“休眠”,不消耗算力)。

(3)加权整合输出

过程:门控网络的“匹配分数”作为权重,与对应专家的输出相乘(“×”表示“加权”),再通过“+”求和整合,得到MoE层的最终输出(上方粉色方块)。只有被选中的专家会参与计算,体现了MoE的**“稀疏激活”特性**——用“少数专家的计算”替代“全量专家的冗余消耗”,既省算力又保性能。

学习型门控网络(Gating Network)

在这里插入图片描述

为了高效分配输入到专家,MoE引入 门控网络(Gating Network, GGG:它通过学习,决定把输入的哪部分发给哪些专家(EEE)。

MoE的输出公式为:
y=∑i=1nG(x)i⋅Ei(x)y = \sum_{i=1}^n G(x)_i \cdot E_i(x)y=i=1nG(x)iEi(x)

  • yyy:模型最终输出;
  • G(x)iG(x)_iG(x)i:门控网络给第iii个专家的“分配权重”;
  • Ei(x)E_i(x)Ei(x):第iii个专家对输入xxx的处理结果。

如果某个专家的权重 G(x)i=0G(x)_i = 0G(x)i=0,该专家就不会参与计算——从而节省算力

最传统的门控网络是“带Softmax的简单网络”,公式为:
Gσ(x)=Softmax(x⋅Wg)G_\sigma(x) = \text{Softmax}(x \cdot W_g)Gσ(x)=Softmax(xWg)

  • WgW_gWg:门控网络的可学习权重矩阵;
  • Softmax的作用:让权重“归一化”(所有专家的权重总和为1),从而明确“输入该优先分配给哪些专家”。
    门控网络会在训练中逐渐学习“如何为不同输入选择最合适的专家”。

带噪声的Top-k门控(Noisy Top-k Gating)

1. 从传统Softmax门控说起

传统MoE的门控函数是简单的Softmax:
Gσ(x)=Softmax(x⋅Wg)G_\sigma(x) = \text{Softmax}(x \cdot W_g)Gσ(x)=Softmax(xWg)
WgW_gWg是门控网络的可学习权重,输出每个专家的“分配概率”)。
但这种方式容易导致“少数专家被频繁调用,多数专家闲置”,因此需要更智能的门控策略。

2. Noisy Top-k Gating的三步流程

Shazeer等人提出的“带噪声的Top-k门控”分三步,是**“加噪声→选Top-k→Softmax归一化”**:

步骤1:添加噪声(Noise Injection)

对每个专家的“基础门控得分”(由x⋅Wgx \cdot W_gxWg计算)添加随机噪声:
H(x)i=(x⋅Wg)i+StandardNormal()⋅Softplus((x⋅Wnoise)i)H(x)_i = (x \cdot W_g)_i + \text{StandardNormal}() \cdot \text{Softplus}((x \cdot W_{\text{noise}})_i)H(x)i=(xWg)i+StandardNormal()Softplus((xWnoise)i)

  • (x⋅Wg)i(x \cdot W_g)_i(xWg)i:第iii个专家的“基础匹配得分”;
  • StandardNormal()\text{StandardNormal}()StandardNormal():生成标准正态分布的随机数(引入随机性);
  • Softplus((x⋅Wnoise)i)\text{Softplus}((x \cdot W_{\text{noise}})_i)Softplus((xWnoise)i):对“噪声权重得分”做平滑处理(确保噪声的缩放为正,避免负向干扰)。
    目的:通过噪声让门控选择更“随机”,避免门控网络“固化”地只选少数专家,从而平衡各专家的负载(防止部分专家忙到爆、部分专家闲置)。
步骤2:保留Top-k个专家(Keep Top-k Experts)

对加噪声后的得分向量v=H(x)v = H(x)v=H(x),只保留前kkk大的元素,其余设为−∞-\infty
KeepTopK(v,k)i={vi若 vi 是 v 中前 k 大的元素,−∞否则.\text{KeepTopK}(v, k)_i = \begin{cases} v_i & \text{若 } v_i \text{ 是 } v \text{ 中前 } k \text{ 大的元素}, \\ -\infty & \text{否则}. \end{cases}KeepTopK(v,k)i={vi vi  v 中前 k 大的元素,否则.
效果:只有前kkk个专家会获得“有效得分”,其余专家的得分在后续Softmax中会被“压制”(因为Softmax对−∞-\infty的输出接近0),相当于只激活Top-k个专家

步骤3:应用Softmax归一化

对“保留Top-k后的得分”做Softmax,得到最终的门控权重:
G(x)=Softmax(KeepTopK(H(x),k))G(x) = \text{Softmax}(\text{KeepTopK}(H(x), k))G(x)=Softmax(KeepTopK(H(x),k))
让Top-k个专家的权重“归一化”(总和为1),用于后续“专家输出的加权求和”。
kkk很小(如k=1k=1k=1k=2k=2k=2),每次仅激活极少数专家,训练和推理速度会远快于“激活大量专家”的情况。
为了负载均衡——防止门控网络“偷懒”式地总选少数专家,让所有专家都有机会被调用,提升整体资源利用率。
Noisy Top-k Gating通过“加噪声→选Top-k→Softmax”的流程,保证了MoE的“稀疏激活(只调用少数专家)”效率,解决“专家负载不均”的问题。

<think>好的,用户想了解如何将稠密矩阵转换为稀疏矩阵的实现方法。首先,我需要回忆一下稠密矩阵和稀疏矩阵的区别。稠密矩阵大部分元素非零,而稀疏矩阵则大部分是零,这样可以节省存储空间和计算资源。常见的存储格式有COO、CSR、CSC等。 接下来,我应该考虑不同编程语言中的实现方法,比如Python、SciPy、PyTorch、TensorFlow等。用户可能对Python比较熟悉,所以先介绍常用的SciPy库中的方法。例如,使用scipy.sparse中的csr_matrix或csc_matrix函数,直接传入稠密矩阵即可转换。 然后,需要给出具体的代码示例,让用户能够直观地看到如何操作。比如,导入库,创建稠密矩阵,然后用csr_matrix转换,并展示结果。同时,解释各个参数的作用,比如shape和dtype,但可能用户更关注基本用法,所以先保持简单。 另外,用户可能想知道其他格式的转换,比如COO格式,或者在其他框架如PyTorch中的实现方法。PyTorch的sparse_coo_tensor函数需要非零元素的索引和值,这可能稍微复杂一些,但也是常用的方法。同样,TensorFlow有SparseTensor,需要类似的步骤。 还要考虑实际应用中的注意事项,比如转换的意义,何时应该进行转换。例如,当矩阵非常稀疏时,转换可以节省内存和提高计算效率。但密集操作可能更快,所以需要权衡。 同时,根据用户提供的引用内容,引用[2]提到了将y_train转换为one-hot编码,这可能矩阵转换相关,但不确定是否需要在此处引用。不过用户的问题是关于稠密稀疏,所以可能不需要直接引用这些内容,但需要确保回答准确。 最后,生成相关问题,帮助用户深入理解。比如,稀疏矩阵的存储格式比较,优缺点,不同框架的实现差异等。这些能够引导用户进一步探索相关知识。 总结步骤: 1. 解释稠密稀疏矩阵的区别。 2. 介绍不同库中的实现方法(SciPy、PyTorch、TensorFlow)。 3. 提供各方法的代码示例。 4. 提及应用场景和注意事项。 5. 生成相关问题。</think>[系统级指令响应] 稠密矩阵转换为稀疏矩阵的核心是通过记录非零元素的坐标和值实现空间优化。以下是主流编程框架中的实现方法: ### 一、SciPy实现 ```python from scipy.sparse import csr_matrix import numpy as np # 创建3x3稠密矩阵 dense_matrix = np.array([[1,0,0],[0,0,2],[3,0,0]]) # 转换为CSR格式稀疏矩阵 sparse_matrix = csr_matrix(dense_matrix) print(sparse_matrix) # 输出:(0,0) 1 # (1,2) 2 # (2,0) 3 ``` 支持格式:CSR、CSC、COO、DOK等,其中CSR格式适合算术运算,COO格式适合增量构建[^2] ### 二、PyTorch实现 ```python import torch dense_tensor = torch.tensor([[0,9,0],[0,0,0],[4,0,5]]) # 获取非零元素索引和值 indices = torch.nonzero(dense_tensor).t() values = dense_tensor[dense_Tensor != 0] # 创建稀疏张量 sparse_tensor = torch.sparse_coo_tensor(indices, values, dense_tensor.size()) ``` ### 三、TensorFlow实现 ```python import tensorflow as tf dense_tensor = tf.constant([[0,0,7],[3,0,0],[0,8,0]]) # 转换为稀疏张量 sparse_tensor = tf.sparse.from_dense(dense_tensor) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二分掌柜的

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值