第七课 循环神经网络与自然语言处理

1 循环神经网络

1.1 场景与多种应用

1 模仿论文生成
2 模仿linux内核编写代码
3 模仿小四写论文
4 机器翻译
5 image to text 看图说话

1.2 RNN网络结构

1.2.1为什么需要RNN

传统神经网络输入和输出是互相独立的。
我是中国人,我的母语是____。这里完形填空的结果是与前面的词相关的。
RNN引入 记忆 的概念。循环:来源于每个元素执行相同的任务。输出依赖于 输入和记忆。

有时间 顺序上的依赖,都可以使用RNN。例如一段时间内的销量。也就是说RNN不仅仅可以用于解决NLP问题。

推荐系统下也可以使用RNN。

1.2.2 RNN 结构

在这里插入图片描述

x t x_t xt是时间t处的输入。例如时间t的词向量。
s t s_t st是时间t处的记忆。
o t o_t ot是时间t处的输出。例如预测下个词的话,可能是每个词出现的概率。
公式:
S t = f ( U X t + W S t − 1 ) S_t=f(UX_t+WS_{t-1}) St=f(UXt+WSt1) f可以是tanh等函数。
O t = s o f t m a x ( V S t ) O_t=softmax(VS_t) Ot=softmax(VSt)
例如 X t X_t Xt可以是一个1000x1的向量,U是一个800x1000的矩阵,W是一个800x800的矩阵,这样 S t S_t St就是一个800x1的向量。
V是一个4万x800的矩阵。(4万是词汇量)

说明:
1 隐状态 s t s_t st是记忆体,捕捉了之前时间点上的信息。例如现在你读高三, s t s_t st就是你在高一,高二,高三学习内容的记忆。

2 o t o_t ot是通过之前所有时间以及当前记忆共同得到的。

3 由于容量问题, s t s_t st并不能记住所有内容。

4 RNN共享一组参数:U、W、V。可以这样理解,你就是你,你用同一套学习方法学习了高一、高二、高三的内容。

5 有些情况下,不需要每个时间都有 o t o_t ot,只需要在最后时间有输出即可。例如文本分类。

RNN唐诗生成器

1.3 多种RNN

1 双向RNN
有些时候,输出依赖于之前和之后的序列元素。
在这里插入图片描述

h ⃗ t = f ( W ⃗ x t + V ⃗ h ⃗ t − 1 + b ⃗ ) \vec h_t = f(\vec Wx_t+\vec V\vec h_{t-1}+\vec b) h t=f(W xt+V h t1+b )
h ← t = f ( W ← x t + V ← h ← t + 1 + b ← ) \overleftarrow{h}_{t}=f\left(\overleftarrow{W} x_{t}+\overleftarrow{V} \overleftarrow{h}_{t+1}+\overleftarrow{b}\right) h t=f(W xt+V h t+1+b )
y t = g ( U [ h ⃗ t ; h ← t ] + c ) y_{t}=g\left(U\left[\vec{h}_{t} ; \overleftarrow{h}_t\right]+c\right) yt=g(U[h t;h t]+c)

从左向右计算记忆 h ⃗ t \vec h_t h t,从右向左计算记忆 h ← t \overleftarrow{h}_t h t U [ h ⃗ t ; h ← t ] U\left[\vec{h}_{t} ; \overleftarrow{h}_t\right] U[h t;h t]是对两个矩阵做拼接。

h和s的含义相同,表示记忆。
左右信息融合,使用的是concat拼接的方法。

2 深层双向RNN
在这里插入图片描述
图中的h和之前的S是等价的。
这样的网络可以这样理解。高考前的多轮复习。高三内容有很多章,每个时间t学习一章。复习呢进行了多轮。按照图中是三轮。

h ⃗ t ( i ) = f ( W ⃗ ( i ) h t ( i − 1 ) + V ⃗ ( i ) h ⃗ t − 1 ( i ) + b ⃗ ( i ) ) \vec h_t^{(i)} = f(\vec W^{(i)}h_t^{(i-1)}+\vec V^{(i)}\vec h_{t-1}^{(i)}+\vec b^{(i)}) h t(i)=f(W (i)ht(i1)+V (i)h t1(i)+b (i))
t=第二章,i=第二轮,那么其学习记忆=W第一轮第二章的学习记忆+V第二轮第一章的学习记忆。

1.4 BPTT算法

BPTT和BP很类似,是一个思路,但是因为这里和时刻有关系。
在这里插入图片描述
在这样一个多分类器中,损失函数是一个交叉熵。
某一时刻的损失函数是: E t ( y t , y ^ t ) = − y t log ⁡ y ^ t E_{t}\left(y_{t}, \hat{y}_{t}\right)=-y_{t} \log \hat{y}_{t} Et(yt,y^t)=ytlogy^t
最终的损失函数是所有时刻的交叉熵相加: E ( y , y ^ ) = ∑ t E t ( y t , y ^ t ) = − ∑ y t log ⁡ y ^ t \begin{aligned} E(y, \hat{y}) &=\sum_{t} E_{t}\left(y_{t}, \hat{y}_{t}\right) \\ &=-\sum y_{t} \log \hat{y}_{t} \end{aligned} E(y,y^)=tEt(yt,y^t)=ytlogy^t
损失函数对W求偏导: ∂ E ∂ W = ∑ t ∂ E t ∂ W \frac{\partial E}{\partial W}=\sum_{t} \frac{\partial E_{t}}{\partial W} WE=tWEt

假设t=3, ∂ E 3 ∂ W = ∂ E 3 ∂ y ^ 3 ∂ y ^ 3 ∂ s 3 ∂ s 3 ∂ W \frac{\partial E_{3}}{\partial W}=\frac{\partial E_{3}}{\partial \hat{y}_{3}} \frac{\partial \hat{y}_{3}}{\partial s_{3}} \frac{\partial s_{3}}{\partial W} WE3=y^3E3s3y^3Ws3
E 3 E_3 E3 y 3 y_3 y3有关系, y 3 y_3 y3 s 3 s_3 s3有关系(参考2.1中的公式)。
s 3 = t a n h ( U x 3 + W s 2 ) s_3=tanh(Ux_3+Ws_2) s3=tanh(Ux3+Ws2) s 3 s_3 s3 s 2 s_2 s2有关系,我们对 s 3 s_3 s3对W求偏导不能直接等于 s 2 s_2 s2,因为 s 2 s_2 s2也和W有关系。
s 2 = t a n h ( U x 2 + W s 1 ) s_2=tanh(Ux_2+Ws_1) s2=tanh(Ux2+Ws1)

s 2 s_2 s2 s 1 s_1 s1有关系…一直到0时刻。所以我们会把每个时刻的相关梯度值相加: ∂ s 3 ∂ W = ∑ k = 0 3 ∂ s 3 ∂ s k ∂ s k ∂ W \frac{\partial s_{3}}{\partial W}=\sum_{k=0}^{3} \frac{\partial s_{3}}{\partial s_{k}} \frac{\partial s_{k}}{\partial W} Ws3=k=03sks3Wsk

其中我们在计算 ∂ s 3 ∂ s 2 \dfrac{\partial s_3}{\partial s_2} s2s3的时候需要使用链式法则计算: ∂ s 3 ∂ s 1 = ∂ s 3 ∂ s 2 ∂ s 2 ∂ s 1 ∂ s 1 ∂ s 0 \dfrac{\partial s_3}{\partial s_1}=\dfrac{\partial s_3}{\partial s_2}\dfrac{\partial s_2}{\partial s_1}\dfrac{\partial s_1}{\partial s_0} s1s3=s2s3s1s2s0s1

所以最终得到: ∂ E 3 ∂ W = ∑ k = 0 3 ∂ E 3 ∂ y ^ 3 ∂ y ^ 3 ∂ s 3 ∂ s 3 ∂ s k ∂ s k ∂ W = ∑ k = 0 3 ∂ E 3 ∂ y ^ 3 ∂ y ^ 3 ∂ s 3 ( ∏ j = k + 1 3 ∂ s j ∂ s j − 1 ) ∂ s k ∂ W \frac{\partial E_{3}}{\partial W}=\sum_{k=0}^{3} \frac{\partial E_{3}}{\partial \hat{y}_{3}} \frac{\partial \hat{y}_{3}}{\partial s_{3}} \frac{\partial s_{3}}{\partial s_{k}} \frac{\partial s_{k}}{\partial W} =\sum_{k=0}^{3} \frac{\partial E_{3}}{\partial \hat{y}_{3}} \frac{\partial \hat{y}_{3}}{\partial s_{3}}\left(\prod_{j=k+1}^{3} \frac{\partial s_{j}}{\partial s_{j-1}}\right) \frac{\partial s_{k}}{\partial W} WE3=k=03y^3E3s3y^3sks3Wsk=k=03y^3E3s3y^3j=k+13sj1sjWsk

看公式中有连乘的部分。当使用tanh作为激活函数的时候,由于导数值分别在0到1之间,随着时间的累计,小于1的数不断相城,很容易趋近于0。(另外一种解释:如果权重矩阵 W的范数也不很大,那么经过 𝑡−𝑘 次传播后, ∂ s 3 ∂ s k \dfrac{\partial s_3}{\partial s_k} sks3的范数会趋近于0,这也就导致了梯度消失。)

梯度消失带来的一个问题就是记忆力有限,离得越远的东西记住得越少。

1.5 生成模型与图像描述

一张图片->经过VGG网络,取得倒数第一层的输出->作为RNN第一层的多加的输入。
在这里插入图片描述

2 LSTM

2.1 LSTM

LSTM就是为了解决普通RNN中的梯度消失问题提出的。
LSTM提出了记忆细胞C,以及各种门。下图中的h与上面的S是相同含义,表示记忆。每个时刻的输出,在这里是没有画出来的。
假设现在有一个任务是根据已经读到的词,预测下一个词。例如输入法,生成诗词。

在这里插入图片描述

第1步:忘记门:从记忆细胞中丢弃一些信息
在这里插入图片描述

使用sigmoid函数,经过sigmoid之后得到一个概率值,描述每个部分有多少量可以通过。
f t = σ ( W f ⋅ [ h t − 1 , x t ] + b f ) f_{t}=\sigma\left(W_{f} \cdot\left[h_{t-1}, x_{t}\right]+b_{f}\right) ft=σ(Wf[ht1,xt]+bf)

如果C中包含当前对象的性别属性,现在已经正确的预测了当前的名词。当我们看到另外一个新的对象的时候,我们希望忘记旧对象的性别属性。

第2步:更新什么新信息到记忆中
在这里插入图片描述

sigmoid决定什么值需要更新: i t = σ ( W i ⋅ [ h t − 1 , x t ] + b i ) i_{t}=\sigma\left(W_{i} \cdot\left[h_{t-1}, x_{t}\right]+b_{i}\right) it=σ(Wi[ht1,xt]+bi)
tanh层创建一个新的候选值向量(高三这一年学到的所有知识): C ~ t = tanh ⁡ ( W C ⋅ [ h t − 1 , x t ] + b C ) \tilde{C}_{t}=\tanh \left(W_{C} \cdot\left[h_{t-1}, x_{t}\right]+b_{C}\right) C~t=tanh(WC[ht1,xt]+bC)

第3步:更新记忆细胞
在这里插入图片描述

把旧状态与 f t f_t ft相乘,丢弃掉我们确定需要丢弃的信息;
加上 i t i_t it* C ~ t \tilde{C}_{t} C~t,就是新的候选值,更新状态。
C t = f t ∗ C t − 1 + i t ∗ C ~ t C_{t}=f_{t} * C_{t-1}+i_{t} * \tilde{C}_{t} Ct=ftCt1+itC~t
C t − 1 C_{t-1} Ct1是到高二以及之前的所有记忆, C ~ t \tilde{C}_{t} C~t高三这一年学到的所有知识。带着两部分应该留下的内容去高考。

在任务中就是希望把新看到对象的性别属性添加到C,而把旧对象的性别属性删除。

第4步,基于细胞状态得到输出
在这里插入图片描述

首先一个sigmoid层确定细胞状态的哪个部分的值将输出: o t = σ ( W o [ h t − 1 , x t ] + b o ) o_{t}=\sigma\left(W_{o}\left[h_{t-1}, x_{t}\right]+b_{o}\right) ot=σ(Wo[ht1,xt]+bo)

接着用tanh处理细胞状态,输出我们确定输出的那部分,这部分是记忆用于下一时刻帮助做出决策的: h t = o t ∗ tanh ⁡ ( C t ) h_{t}=o_{t} * \tanh \left(C_{t}\right) ht=ottanh(Ct)

在语言模型中,既然我当前看到了一个对象,这里可能输出一个动词信息,以备下一步需要用到。例如这里可能输出当前对象是单数还是复数,这样就知道下一个动词应该填写什么形式。

总结:
在这里插入图片描述

1:决定老细胞只留下哪部分 f t = σ ( W f ⋅ [ h t − 1 , x t ] + b f ) f_{t}=\sigma\left(W_{f} \cdot\left[h_{t-1}, x_{t}\right]+b_{f}\right) ft=σ(Wf[ht1,xt]+bf)
2: 决定新知识应该记住哪部分: i t = σ ( W i ⋅ [ h t − 1 , x t ] + b i ) i_{t}=\sigma\left(W_{i} \cdot\left[h_{t-1}, x_{t}\right]+b_{i}\right) it=σ(Wi[ht1,xt]+bi)
新学习到的知识: C ~ t = tanh ⁡ ( W C ⋅ [ h t − 1 , x t ] + b C ) \tilde{C}_{t}=\tanh \left(W_{C} \cdot\left[h_{t-1}, x_{t}\right]+b_{C}\right) C~t=tanh(WC[ht1,xt]+bC)
3 更新细胞状态: C t = f t ∗ C t − 1 + i t ∗ C ~ t C_{t}=f_{t} * C_{t-1}+i_{t} * \tilde{C}_{t} Ct=ftCt1+itC~t
4 决定要输出哪部分: o t = σ ( W o [ h t − 1 , x t ] + b o ) o_{t}=\sigma\left(W_{o}\left[h_{t-1}, x_{t}\right]+b_{o}\right) ot=σ(Wo[ht1,xt]+bo)
产生隐藏状态的输出: h t = o t ∗ tanh ⁡ ( C t ) h_{t}=o_{t} * \tanh \left(C_{t}\right) ht=ottanh(Ct)

对比普通的RNN,输出 o t = σ ( V S t ) o_t=\sigma\left(VS_t\right) ot=σ(VSt), S t = t a n h ( U x t + W S t − 1 ) S_t=tanh(Ux_t+WS_{t-1}) St=tanh(Uxt+WSt1),对于记忆 S t S_t St是由之前记忆和新知识共同组成。加入细胞状态可以选择忘记一部分老知识和选择忘记一部分新知识。

在之前的求导过程中 ∂ s 3 ∂ s 1 = ∂ s 3 ∂ s 2 ∂ s 2 ∂ s 1 ∂ s 1 ∂ s 0 \dfrac{\partial s_3}{\partial s_1}=\dfrac{\partial s_3}{\partial s_2}\dfrac{\partial s_2}{\partial s_1}\dfrac{\partial s_1}{\partial s_0} s1s3=s2s3s1s2s0s1,现在变为。。。。。

输出 o t = σ ( V h t ) o_t=\sigma\left(Vh_t\right) ot=σ(Vht)
h t = o t ∗ tanh ⁡ ( C t ) h_{t}=o_{t} * \tanh \left(C_{t}\right) ht=ottanh(Ct)
C t = f t ∗ C t − 1 + i t ∗ C ~ t = f t ∗ C t − 1 + i t ∗ tanh ⁡ ( W C ⋅ [ h t − 1 , x t ] + b C ) C_{t}=f_{t} * C_{t-1}+i_{t} * \tilde{C}_{t}=f_{t} * C_{t-1}+i_t*\tanh \left(W_{C} \cdot\left[h_{t-1}, x_{t}\right]+b_{C}\right) Ct=ftCt1+itC~t=ftCt1+ittanh(WC[ht1,xt]+bC)
损失函数不变,还是令t=3, ∂ E 3 ∂ W = ∂ E 3 ∂ y ^ 3 ∂ y ^ 3 ∂ h 3 ∂ h 3 ∂ C 3 ∂ C 3 ∂ W c \frac{\partial E_{3}}{\partial W}=\frac{\partial E_{3}}{\partial \hat{y}_{3}} \frac{\partial \hat{y}_{3}}{\partial h_{3}} \frac{\partial h_{3}}{\partial C_3}\frac{\partial C_{3}}{\partial W_c} WE3=y^3E3h3y^3C3h3WcC3

要求 ∂ C 3 ∂ W c \dfrac{\partial C_3}{\partial W_c} WcC3,这样 C t C_t Ct W c W_c Wc有关系, C t − 1 C_{t-1} Ct1 W c W_c Wc有关系,两部分相加,对整个函数求导,就是对这两部分分别求导,再相加。与普通RNN的相乘
∂ C 3 ∂ C 1 = ∂ C 3 ∂ C 2 + ∂ C 2 ∂ C 1 = ? \dfrac{\partial C_3}{\partial C_1}=\dfrac{\partial C_3}{\partial C_2}+\dfrac{\partial C_2}{\partial C_1}=? C1C3=C2C3+C1C2=?

2.2 GRU

GRU是LSTM的变种之一。
在这里插入图片描述

GRU做的改变是:
1 将忘记门和输入门合并成一个门,称为更新门。
2 细胞状态和隐藏状态,也就是上面的C和 h t h_t ht合并为一个 h t h_t ht
这样GRU的参数就比标准LSTM要少,在很多情况下效果基本一致。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值