pytorch矩阵相乘与点乘

本文详细介绍了PyTorch中矩阵相乘和点乘的区别,包括torch.mul()和torch.mm()函数的使用。torch.mul()用于矩阵点乘,其规则灵活,可以进行不同形状的矩阵运算,而torch.mm()则专门用于标准的矩阵乘法。此外,还提到了nn.Linear在神经网络中的线性变换作用。同时,文章提及了avg_pool2d函数在降采样和求平均值方面的应用。
摘要由CSDN通过智能技术生成

1pytorch矩阵相乘与点乘

torch.mul(a, b) 矩阵点乘
矩阵点乘要求两个矩阵维度符合一定要求
a的形状是(x,y)

  • b的形状是(x,y),那么得到(x,y)形状的矩阵
  • b的形状是(x,1),那么得到(x,y)形状的矩阵,从2到y列的值与第一列的值相
  • y=1,b的形状是(1,x),那么得到(x,x)形状的矩阵
  • 点乘,再求和就是卷积

torch.mm(a,b) 矩阵相乘

  • a的形状是(x,y),b的形状是(y,z),得到(x,z)形状的矩阵
  • 只能计算二维矩阵的相乘。

nn.Linear 线性变化

  • y=ax+b 包含矩阵乘的操作

2 F.avg_pool2d

参考文章
对输入的二维矩阵做均值汇聚,达到降采样的目的。当然也可以用来求均值,如果参数合适。
pooled = F.avg_pool2d(embedded, (embedded.shape[1], 1)).squeeze(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值