1pytorch矩阵相乘与点乘
torch.mul(a, b) 矩阵点乘
矩阵点乘要求两个矩阵维度符合一定要求
a的形状是(x,y)
- b的形状是(x,y),那么得到(x,y)形状的矩阵
- b的形状是(x,1),那么得到(x,y)形状的矩阵,从2到y列的值与第一列的值相
- y=1,b的形状是(1,x),那么得到(x,x)形状的矩阵
- 点乘,再求和就是卷积
torch.mm(a,b) 矩阵相乘
- a的形状是(x,y),b的形状是(y,z),得到(x,z)形状的矩阵
- 只能计算二维矩阵的相乘。
nn.Linear 线性变化
- y=ax+b 包含矩阵乘的操作
2 F.avg_pool2d
参考文章
对输入的二维矩阵做均值汇聚,达到降采样的目的。当然也可以用来求均值,如果参数合适。
pooled = F.avg_pool2d(embedded, (embedded.shape[1], 1)).squeeze(1)