【详解】神经网络矩阵的点乘与叉乘(pytorch版)

官方文档


太长不看版本

  1. 点乘为两个矩阵对应元素相乘(逐元素级element-wise)
    实现方式:可以通过*和torch.mul(x, y)函数实现(含广播机制)
    模型符号:一个圆圈中有一个实心点
  2. 叉乘为传统的线性代数学的矩阵乘法
    实现方式:可以通过torch.mm()和torch.matmul()实现(含广播机制)
    模型符号:一个圆圈中有一个叉×
  3. 逐元素相加
    实现方式:可以通过+和torch.add(x, y)函数实现
    模型符号:一个圆圈中有一个加号+

广播机制:如果PyTorch操作支持广播,则其Tensor参数可以自动扩展为相等大小(无需复制数据)
如果张量x和y可以符合广播的条件,那么:结果张量可以按照下面的方式计算:
1、如果x和y的维度不相同,用1来扩张维度少的那个,使两个张量维度一致。
2、对于每个维度,结果维度是x,y对应维度的最大值。
即:列向量按列扩充,行向量按行扩充,使两个tensor扩展为相同尺寸,进行对应元素相乘。


一、点乘

点乘就是对应位置元素相乘(element-wise),可以通过*和torch.mul()函数实现,在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值