太长不看版本
- 点乘为两个矩阵对应元素相乘(逐元素级element-wise)
实现方式:可以通过*和torch.mul(x, y)函数实现(含广播机制)
模型符号:一个圆圈中有一个实心点 - 叉乘为传统的线性代数学的矩阵乘法
实现方式:可以通过torch.mm()和torch.matmul()实现(含广播机制)
模型符号:一个圆圈中有一个叉× - 逐元素相加
实现方式:可以通过+和torch.add(x, y)函数实现
模型符号:一个圆圈中有一个加号+
广播机制:如果PyTorch操作支持广播,则其Tensor参数可以自动扩展为相等大小(无需复制数据)
如果张量x和y可以符合广播的条件,那么:结果张量可以按照下面的方式计算:
1、如果x和y的维度不相同,用1来扩张维度少的那个,使两个张量维度一致。
2、对于每个维度,结果维度是x,y对应维度的最大值。
即:列向量按列扩充,行向量按行扩充,使两个tensor扩展为相同尺寸,进行对应元素相乘。
一、点乘
点乘就是对应位置元素相乘(element-wise),可以通过*和torch.mul()函数实现,在