LLM 应用开发入门 - 实现 langchain.js ChatModel 接入火山引擎大模型和实现一个 CLI 聊天机器人(下)

书接上回,我们已经实现了一个 langchain.js 接入火山引擎的 ChatModel

本文我们实现将这个大模型接入到聊天 CLI 实现和大模型进行交互式问答

需求

我们希望这个简易的聊天 CLI 能够拥有以下功能

  • 启动时由用户输入 prompt
  • 支持回答流式输出
  • 支持连续聊天和清空上下文

聊天 CLI 基础能力实现

由于实现基本的 CLI 输入输出不是本文重点。这里我们直接通过以下代码实现一个简单的 node.js 交互式程序,实现了

  • 启动后接收用户输入的 prompt
  • 接收/clear 指令打印清空
  • 其它输入后原样打印
import readline from 'node:readline'
import process, { stdin, stdout } from 'node:process'
import { EventEmitter } from 'node:events'

class ChatCli extends EventEmitter {
  constructor() {
    super()

    this.input = stdin
    this.output = stdout
    this.input.setEncoding('utf-8')
    this.output.setEncoding('utf-8')
  }

  async runInputLoop() {
    const prompt = await this.prompt('请输入 prompt\n > ')

    console.log('prompt', prompt)

    return new Promise((resolve) => {
      const rl = readline.createInterface(this.input, this.output)

      rl.setPrompt('> ')
      rl.prompt()

      rl.on('line', async (line) => {
        if (line === '\\clear') {
          this.write('清空上下文\n')
        }
        else {
          this.write(`xxx ${line}`)
          this.write('\n')
        }

        rl.prompt()
      })

      rl.on('close', resolve)

      rl.on('SIGINT', () => {
        rl.close()
        process.emit('SIGINT', 'SIGINT')
      })
    })
  }

  write(data) {
    this.output.write(data)
  }

  prompt(query = '> ') {
    return new Promise((resolve) => {
      const rl = readline.createInterface(this.input, this.output)
      rl.question(query, (answer) => {
        resolve(answer)
        rl.close()
      })
    })
  }
}

const cli = new ChatCli()

cli.runInputLoop()

大模型接入

由于聊天 CLI 已经实现,我们只需要在对应的代码点进行模型的交互。相关接入火山引擎细节见LLM 应用开发入门 - 实现 langchain.js ChatModel 接入火山引擎大模型和实现一个 CLI 聊天机器人(上)

初始化 langchain 火山大模型

构造函数中初始化火山大模型

import { ChatVolcengine } from 'langchain-bytedance-volcengine'

class ChatCli extends EventEmitter {
  constructor() {
    super()
    // ....
    // 初始化火山大模型
    this.chatModel = new ChatVolcengine({
      volcengineApiHost: process.env.VOLCENGINE_HOST,
      volcengineApiKey: process.env.VOLCENGINE_API_KEY,
      model: process.env.VOLCENGINE_MODEL,
    })

    // ....
  }
}

prompt 接收和大模型聊天交互

  • 将接受的 prompt 作为SystemMessage和将用户输入作为 HumanMessage传入stream方法。这里的SystemMessageHumanMessage也是 langchain 提供的工具类用于构造消息

  • 解析大模型返回的流式数据输出到终端

import { HumanMessage, SystemMessage } from '@langchain/core/messages'

 async runInputLoop() {
    const prompt = await this.prompt('请输入 prompt\n > ')
    return new Promise((resolve) => {
      //....

      rl.on('line', async (line) => {
        if (line === '\\clear') {
          this.write('清空上下文\n')
        }
        else {
          const stream = await this.chatModel.stream([new SystemMessage(prompt), new HumanMessage(line)])

          for await (const chunk of stream) {
            this.write(chunk.content)
          }
          this.write('\n')
        }
        //....
      })
      //....
    })
  }

运行效果

连续聊天能力实现

虽然我们已经和 CLI 打通了和大模型的交互聊天,但是此时聊天 CLI 是没有聊天上下文功能的。

我们需要为这个聊天 CLI 增加上下文功能。对于直接调用大模型 OPEN API 来说,这通常需要我们将上下文手动处理传入大模型的 API。

但是上面提过,作为一个强大的 LLM 应用开发框架,langchain 提供了开箱即用的能力帮助我们实现。

langchain 只所以称为 chain,它是可以以自定义chain的形式将多个工具串联起来使用。每个串联起来的工具必须是一个实现了 Runnable 接口的实例,目前 langchain 中实现了Runnable 接口的组件有 Prompt ChatModel LLM OutputParser Retriever Tool

这里我们使用 langchain 提供的RunnableWithMessageHistory进行聊天上下文的记录和调用;使用InMemoryChatMessageHistory来实现内存的聊天上下文的存储

修改代码实现如下

  • 通过 ChatPromptTemplate.fromMessages 来初始化传给模型的完整 prompt。其中第一项为我们输入的SystemMessage,第二项为占位传递的历史上下文,第三项是本次我们的输入

  • 通过自定义链将这个prompt和我们的火山chatModel串联起来

  • 将自定义链传递给RunnableWithMessageHistory构造出 withMessageHistory 对象,并实现聊天历史的上下文对象

  • 通过 withMessageHistory.stream 进行模型的调用,并同时传递本次的上下文config对象

import {
  ChatPromptTemplate,
  MessagesPlaceholder,
} from '@langchain/core/prompts'

import { InMemoryChatMessageHistory } from '@langchain/core/chat_history'
import { RunnableWithMessageHistory } from '@langchain/core/runnables'

async runInputLoop() {
  const _prompt = await this.prompt('请输入 prompt\n > ')

  // 通过 `ChatPromptTemplate.fromMessages` 来初始化传给模型的完整 prompt。其中第一项为我们输入的`SystemMessage`,第二项为占位传递的历史上下文,第三项是本次我们的输入
  const prompt = ChatPromptTemplate.fromMessages([
    ['system', _prompt],
    new MessagesPlaceholder('chat_history'),
    ['human', '{input}'],
  ])

  // 通过自定义链将这个`prompt`和我们的火山`chatModel`串联起来
  const chain = prompt.pipe(this.chatModel)

  const messageHistories = {}

  // 将自定义链传递给`RunnableWithMessageHistory`构造出 `withMessageHistory` 对象,并实现聊天历史的上下文对象
  const withMessageHistory = new RunnableWithMessageHistory({
    runnable: chain,
    getMessageHistory: async (sessionId) => {
      if (messageHistories[sessionId] === undefined) {
        messageHistories[sessionId] = new InMemoryChatMessageHistory()
      }
      return messageHistories[sessionId]
    },
    inputMessagesKey: 'input',
    historyMessagesKey: 'chat_history',
  })

    return new Promise((resolve) => {
      const config = {
        configurable: {
          sessionId: `${Date.now()}`,
        },
      }

      rl.on('line', async (line) => {
        if (line === '\\clear') {
          // 接收重置上下文是更新 config
          config.configurable.sessionId = `${Date.now()}`
        }
        else {
          // 通过 `withMessageHistory.stream` 进行模型的调用,并同时传递本次的上下文`config`对象
          const stream = await withMessageHistory.stream({
            input: line,
          }, config)

          for await (const chunk of stream) {
            this.write(chunk.content)
          }
          this.write('\n')
        }

        rl.prompt()
      })
      //....
    })
}

再次运行代码测试,表现符合预期

完整实现

代码详见

import readline from 'node:readline'
import process, { stdin, stdout } from 'node:process'
import { EventEmitter } from 'node:events'

import { ChatVolcengine } from 'langchain-bytedance-volcengine'
import 'dotenv/config'
import { HumanMessage, SystemMessage } from '@langchain/core/messages'
import {
  ChatPromptTemplate,
  MessagesPlaceholder,
} from '@langchain/core/prompts'

import { InMemoryChatMessageHistory } from '@langchain/core/chat_history'
import { RunnableWithMessageHistory } from '@langchain/core/runnables'

class ChatCli extends EventEmitter {
  constructor() {
    super()

    this.input = stdin
    this.output = stdout
    this.input.setEncoding('utf-8')
    this.output.setEncoding('utf-8')

    this.chatModel = new ChatVolcengine({
      volcengineApiHost: process.env.VOLCENGINE_HOST,
      volcengineApiKey: process.env.VOLCENGINE_API_KEY,
      model: process.env.VOLCENGINE_MODEL,
    })
  }

  async runInputLoop() {
    const _prompt = await this.prompt('请输入 prompt\n > ')

    const prompt = ChatPromptTemplate.fromMessages([
      ['system', _prompt],
      new MessagesPlaceholder('chat_history'),
      ['human', '{input}'],
    ])

    const chain = prompt.pipe(this.chatModel)

    const messageHistories = {}
    const withMessageHistory = new RunnableWithMessageHistory({
      runnable: chain,
      getMessageHistory: async (sessionId) => {
        if (messageHistories[sessionId] === undefined) {
          messageHistories[sessionId] = new InMemoryChatMessageHistory()
        }
        return messageHistories[sessionId]
      },
      inputMessagesKey: 'input',
      historyMessagesKey: 'chat_history',
    })

    return new Promise((resolve) => {
      const rl = readline.createInterface(this.input, this.output)

      rl.setPrompt('> ')
      rl.prompt()

      const config = {
        configurable: {
          sessionId: `${Date.now()}`,
        },
      }

      rl.on('line', async (line) => {
        if (line === '\\clear') {
          config.configurable.sessionId = `${Date.now()}`
        }
        else {
          const stream = await withMessageHistory.stream({
            input: line,
          }, config)

          for await (const chunk of stream) {
            this.write(chunk.content)
          }
          this.write('\n')
        }

        rl.prompt()
      })

      rl.on('close', resolve)

      rl.on('SIGINT', () => {
        rl.close()
        process.emit('SIGINT', 'SIGINT')
      })
    })
  }

  write(data) {
    this.output.write(data)
  }

  prompt(query = '> ') {
    return new Promise((resolve) => {
      const rl = readline.createInterface(this.input, this.output)
      rl.question(query, (answer) => {
        resolve(answer)
        rl.close()
      })
    })
  }
}

const cli = new ChatCli()

cli.runInputLoop()

总结

通过本文我们实现了一个简易的聊天 CLI,并成功接入了火山引擎大模型,实现了流式输出和上下文管理功能。通过 langchain.js 提供的工具类和自定义链,我们不仅简化了与大模型的交互,还实现了连续聊天的能力

参考资源链接:[Java LLM应用开发框架:灵活编排与设计](https://wenku.csdn.net/doc/1z760d1x71?utm_source=wenku_answer2doc_content) 在设计和实现一个基于Java的大型语言模型LLM应用开发框架时,我们需要考虑框架的灵活性、扩展性和易用性。一个高效的应用开发框架应当包括数据处理模块、模型集成模块、接口封装模块和编排控制模块。以下是具体的实现步骤和考虑因素: 1. 数据处理模块:该模块负责输入数据的清洗、标准化和批处理。它可能包括文本分词、去除停用词、向量化转换等功能。Java的流API可以用来简化数据处理流程。 2. 模型集成模块:LLM模型是核心部分,框架需要支持多种模型的集成,如BERT、GPT等。Java中的JNI(Java Native Interface)可以用来桥接Java与C/C++编写的高性能模型库。 3. 接口封装模块:为了实现模块间的通信和数据交换,需要定义一套统一的API接口。这可以通过RESTful API或gRPC等技术实现。 4. 编排控制模块:该模块负责组织和协调各个模块的工作流程,包括任务调度、状态管理和错误处理。可以利用Java中的线程池和并发工具来实现复杂的编排逻辑。 5. 智能代理(Agent):为提高框架的智能化水平,可以设计智能代理来动态地根据应用需求调整工作流程。 在实现这样一个框架时,可以参考《Java LLM应用开发框架:灵活编排与设计》这本书籍。该书不仅提供了理论知识,还有实际案例和代码实现,能够帮助开发者更好地理解框架的构建过程和如何应用到实际的项目中。 通过上述各模块的设计与实现,可以构建出一个功能完备的LLM应用开发框架。开发者可以根据具体需求,选择和集成合适的语言模型,并通过编排控制模块灵活地组织工作流程,最终开发出高效、稳定且易于维护的智能应用。 参考资源链接:[Java LLM应用开发框架:灵活编排与设计](https://wenku.csdn.net/doc/1z760d1x71?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Geek技术前线

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值