opencv学习(二)-矩阵的掩码操作

矩阵的掩码操作

根据掩码矩阵(也称作核)重新计算图像中每个像素的值。掩码矩阵中的值表示近邻像素值(包括该像素自身的值)对新像素值有多大影响。从数学观点看,我们用自己设置的权值,对像素邻域内的值做了个加权平均。

对图像的每个像素应用下面的公式:

即:每个像素 = 该像素*5 - 相邻上下左右的像素的和

原始算法按照这个公式边界值是计算不了的,因为会访问到旁边不存在的元素,需要将边界元素设置成 0

那么,图像矩阵经过这个操作后会发生什么呢?

假设中间像素是很亮的话,显然经过运算会更亮。中间元素亮度低的话,经过运算就会更暗。因此经过这个运算后图像对比度会增强,亮的更亮,暗的更暗

下面的函数就是将原图像和掩码矩阵进行卷积运算

Mat.filter2D(ddepth: number, kernel: Mat, anchor?: Point2, delta?: number, borderType?: number): Mat

const cv = require("opencv4n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Geek技术前线

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值