矩阵的掩码操作
根据掩码矩阵(也称作核)重新计算图像中每个像素的值。掩码矩阵中的值表示近邻像素值(包括该像素自身的值)对新像素值有多大影响。从数学观点看,我们用自己设置的权值,对像素邻域内的值做了个加权平均。
对图像的每个像素应用下面的公式:
即:每个像素 = 该像素*5 - 相邻上下左右的像素的和
原始算法按照这个公式边界值是计算不了的,因为会访问到旁边不存在的元素,需要将边界元素设置成 0
那么,图像矩阵经过这个操作后会发生什么呢?
假设中间像素是很亮的话,显然经过运算会更亮。中间元素亮度低的话,经过运算就会更暗。因此经过这个运算后图像对比度会增强,亮的更亮,暗的更暗
下面的函数就是将原图像和掩码矩阵进行卷积运算
Mat.filter2D(ddepth: number, kernel: Mat, anchor?: Point2, delta?: number, borderType?: number): Mat
const cv = require("opencv4n