
人工智能与AI
人工智能与AI
皓月如我
这个作者很懒,什么都没留下…
展开
-
大数据与智能算法(一-基础技术)-SMU在线学习笔记
【课程来源】感谢B站Up主leonding1018的分享,老师的课程内容非常精彩。本文是观看网络视频课程后的笔记,如涉及版权问题,请及时留言或私信与我联系。1.旅行商问题(TSP问题)TSP问题是一个NP hard问题,在一个多项式时间内不能找到一个最优解。单个车辆遍历路径(TSP问题)可以扩展为:多车辆遍历路径(VRP),车辆实时路径规划,订单分配给不同车辆(调度优化),零部件排产等。2.启发式搜索算法2.1.全局搜索算法2.1.1.贪婪最佳优先搜索2.1.2.A*(A Star)搜索原创 2020-12-04 14:07:24 · 983 阅读 · 1 评论 -
OpenCV神经网络ANN代码编译运行与解读(一)
运行环境搭建:参考《VS2013安装OpenCV4.1版本并搭建一个小程序》基于OpenCV4.1.0中neural_network.cpp的例子代码。参考了《OpenCV3【神经网络】ANN_MLP》中的部分代码和注释内容。BP神经网络原理可参考《置顶 | 2019书单》中机器学习入门部分:神经网络算法:(以后向传播神经网络为例:Back Propagation)分为一个输入层(神...原创 2019-06-27 10:52:13 · 805 阅读 · 1 评论 -
OpenCV神经网络ANN代码编译运行与解读(二)
【转载自】《OpenCV笔记(4)实现神经网络(ANN)》作者的原文参考了:《OpenCV中使用神经网络 CvANN_MLP》实际上的预测结果是并非一个确定值,所以即使用训练集去做测试,也可能出现不完全匹配的情况。(后续需进一步实验证实)备份代码在此:#include <stdio.h>#include "opencv2/core/core.hpp"#include "op...转载 2019-07-01 16:09:45 · 373 阅读 · 0 评论 -
论文研读:Automatic Temporal Segment Detection and Affect Recognition From Face and Body Display
摘要:情感的呈现包含一系列的时域分割:开启(onset)、峰值(apex)、结束(offset)。在过去15年中(论文发表于2009年),计算机界对情感识别进行了大量的研究,但是大多数方法都有两点局限:1.从单一的模式进行表情识别。2.即便少数多模态的方法中,对于动态模式关注过少。本文主要研究基于脸部表情和肢体呈现的情感识别方法。提出了一种自动识别时域分割的方法,并基于时域分割的片段进行情感识别。实原创 2017-02-27 18:05:35 · 1809 阅读 · 0 评论 -
cs231n 学习笔记(5)——神经网络part1:建立神经网络架构
引言: 学习神经网络并不是一定要了解人脑神经结构。 如前所属,线性分类器可以用公式s=Wx来表示,其中X表示一张图片,是一个[3072*1]的列向量,包含了一副图像里的所有像素点。W是[10*3072]的参数矩阵。两个矩阵相乘的结果是一个[10*1]的列向量,表示了这幅图在分类时,每个类别的得分。 对线性分类器进行改进, s=W2max(0,W1x),其中W1选择[100*30原创 2016-08-19 15:53:28 · 1000 阅读 · 0 评论 -
CS231n 学习笔记(4)——神经网络 part4 :BP算法与链式法则
这一部分主要是关于用BP算法来计算梯度,在这一章中,主要解决下面三个问题: 1.梯度的意义(what the gradients mean?) 2.在网络中梯度如何通过反向传播(how they flow backwards in the circuit?) 3.如何调整?( how they communicate which part of the circuit should incre原创 2016-08-08 16:55:28 · 4288 阅读 · 0 评论 -
CS231n 学习笔记(3)——神经网络 part3 :最优化
stanford的course note 近日在维护中,所以换了http://cs231n.stanford.edu/slides/网页的lecture4作为最优化部分的学习资料。 训练神经网络的三要素是: 1. 确定判别函数 2. 确定损失函数 3. 最优化实践中很少用像素的取值去直接训练神经网络。我们采用的是图像的特征,例如:直方图、HOG特征、 Bag of WordsHOG提取算原创 2016-07-30 07:33:04 · 1730 阅读 · 0 评论 -
CS231n 学习笔记(2)——神经网络 part2 :Softmax classifier
*此系列为斯坦福李飞飞团队的系列公开课“cs231n convolutional neural network for visual recognition ”的学习笔记。本文主要是对module 1 的part2 Linear classification: Support Vector Machine, Softmax 的翻译与学习。 Softmax classifier是另一种常用的分类原创 2016-07-28 07:34:07 · 3082 阅读 · 0 评论 -
CS231n 学习笔记(2)——神经网络 part2 :线性分类器,SVM
*此系列为斯坦福李飞飞团队的系列公开课“cs231n convolutional neural network for visual recognition ”的学习笔记。本文主要是对module 1 的part2 Linear classification: Support Vector Machine, Softmax 的翻译与学习。 KNN并不适用于图像识别,其原因在于,KNN的时间复杂原创 2016-07-27 15:12:33 · 2472 阅读 · 0 评论 -
CS231n 学习笔记(1)——神经网络 part1 :图像分类与数据驱动方法
*此系列为斯坦福李飞飞团队的系列公开课“cs231n convolutional neural network for visual recognition ”的学习笔记。本文主要是对module 1 的part1 Image classification 的翻译与学习。图像分类是指对于输入的图像,从一系列的标签中找出正确的与之对应的标签,图像分类是许多复杂的计算机视觉算法的基础。对于计算机而言原创 2016-07-21 11:17:53 · 4532 阅读 · 0 评论